CRRAO Advanced Institute of Mathematics,
Statistics and Computer Science (AIMSCS)

Research Report

STATISTICS
T——

'mnnl‘ %

Author (s): B.L.S. Prakasa Rao

Title of the Report: Characterization of a Multivariate Normal
Distribution from Samples of Random Size

Research Report No.: RR2013-13

Date: September 25,2013

Prof. C R Rao Road, University of Hyderabad Campus,
Gachibowli, Hyderabad-500046, INDIA.
www.crraoaimscs.org




Characterization of a Multivariate Normal Distribution

from Samples of Random Size

B. L. S. PRAKASA RAO
CR Rao Advanced Institute of Mathematics, Statistics
and Computer Science, Hyderabad 500046, India

Abstract: We obtain two characterizations of a multivariate normal distribution from sam-

ples of random size.

Key words : Characterization; Multivariate normal distribution; Samples of random size.

1 Introduction

Let X;,1 <i< N and Y;,1 <j <N be two independent samples of independent identically
distributed k-dimensional random vectors with X; distributed as F' and Y} distributed as

G where N is a discrete integer valued random variable independent of X;,1 < ¢ < N and
Y;,1<j<N. Let

N
W=>la—X;)S  (a—-X;) + (b-Y;)S (b - Y))]
j=1

where ¥ is a known positive definite matrix for vectors a and b in RF. Suppose that
E[eféw] = J(a,b) < oo. We prove that the function J(a,b)) is a measurable function
of the function a’¥~'a + b’S~!'b if and only if the distributions F' and G are multivari-
ate normal with mean zero vector and common covariance matrix o2 for some constant
02 > 1. This result generalizes a similar result in the univariate case by Kotlarski and Cook
(1977). Characterization problems of similar nature for identifiability in stochastic models
are discussed in Prakasa Rao (1992).

2 Characterizations
We now state and prove the main results.

Theorem 2.1: Suppose that the function J(a,b)) = E[e_%w] < oo for all vectors a and b



in R*. Then the function .J(a, b)) is a measurable function of the function a’YS~'a+b’~"'b
for a,b € RF if and only if the distributions F and G are multivariate normal with mean

zero vector and common covariance matrix o2 for some positive constant o2 > 1.
Proof : It is clear that

Ele2"] = S E[ 2V |N =n]P(N =n)
n=1

o0

= Y (Blep(—ya— X5 a - X)) Elesp(— 5 (b — Y,)'S 7 (b~ Y, PN

n=1

The last inequality follows from the assumption that X;,1 < ¢ < N and Y;,1 < j < N
are two independent samples of independent identically distributed k-dimensional random

vectors independent of the random variable N. Let

afa) = Elexp(~ 5(a — X,)'5™ (a — X;)]

and
Then, it follows that,

where
o0
Qx) = Z 2"P(N =n)0 <z <1.
n=1

Note that the function Q(.) is a strictly increasing continuous function on the interval [0, 1].
Hence its inverse is well defined. Suppose that the function £ [e_%W] is a measurable function
of the function a’¥71a + b’Y~!b. Then there exists a measurable real-valued function (.)
such that

(2. 1) Y(@T'a+b'E7'b) = Q(a(a)3(b))

or equivalently
(2. 2) a(a)B(b) = v(@Y a4+ b’ "!b)

where v = Qloy for all a,b € RF. It is easy to see that a(0) # 0 and 5(0) # 0 for a = 0
and b = 0. Substituting a = 0 and b = 0 alternately, we obtain that

(2. 3) (@2 a)y(b'E7b) = a(0)8(0)y(a’S " 'a + b'E'b)



for all a,b € R*. Let "
_
"= 060

Note that the function 6(.) is measurable and the equation (2.3) implies that

,t>0.

(2. 4) f(a’~"1a)d(b’S"'b) = g(a’~la + 'S b)

for all a,b € R*. Hence the function 6(.) is a measurable function such that
(2. 5) 0(t)0(s) =0(t+ s)

for all ¢, s > 0 since X! is a positive definite matrix. Therefore

(2. 6) O(t) =e“tt >0

for some constant c¢. Hence
(2. 7) Y(t) = e’ (0)5(0),t > 0.

Therefore, for any a € RF,

(2. 8) v(@'E'a) = ¢ @520 (0)3(0),a € R*.
Note that
(2. 9) v(a'~1a) = a(a)B(0),a € RF

from (2.2). Combining the equations (2.8) and (2.9) and noting that 3(0) # 0, it follows that

(2. 10) 25720 (0) = afa)
= /k exp[—%(a —x)2 7 Ha - x)]F(dx)
This in turn gives the relation
a(O) ca’¥la _ 1 } Iy—1

for all a € R*.The expression on the right side of the equation (2.11) is the convolution of
a mutivariate normal density function with the distribution F. Hence the expression on the
left side of the equation (2.11) also has to be a probability density function which implies
that the constant ¢ = —ﬁ for some 02 > 0 and «(0) is a suitable normalizing constant.
The characteristic functions of the probability densities on both sides of the equation (2.11),
then, should satisfy the relation

(2. 12) exp[—%(t/Et)UZ] _ exp[—%t’ﬁ]t] x(t),t € R”
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where ¢x is the characteristic function of the random vector X. Hence
Lo/ o 2 k
(2. 13) ox(t) = exp[—i(t (c°X — X)t)o7], t € R".

Since ¢x is the characteristic function of the random vector X, it follows that ¢? > 1 and
the random vector X has the multivariate normal distribution with the mean vector zero and
the covariance matrix (02 — 1)¥. Similar arguments prove that the random vector Y is also

multivariate normal with mean vector zero and the covariance matrix (o2 — 1)X.

The converse part of the result stated in the theorem can be easily verified.

Suppose f and g are probability density functions on R*. Let

Z=1_,f(a—X;)g(b—-7Y;),a,be R"

Theorem 2.2: Suppose that the function H(a,b) = E[Z] < oc,a,b € RF. Then the
function H(a,b) is a measurable function of the function a’>~~!'a + b’Y~!'b if and only
if the distributions F' and G are multivariate normal with mean vectors pur and pg and
covariance matrices X and Y respectively and the probability density functions f and g
are multivariate normal probability density functions with mean vectors py and p, and the

covariance matrices Xy and X, respectively with

pr+pp = pG + g =0
and
Yp+ Y =350+ 5, = 0%
for some o2 > 0.

Proof : Let a(a) = E[f(a—X)] and B(b) = E[g(b—Y)],a,b € R¥. It is easy to check that

(2. 14) EZ] = ) [E(f(a—X))E(g(b~Y))"P(N =n)
n=1

= Q(a(a)s(b)) (say).

Suppose that E(Z) = ¢(a’~"ta + b’Y~!b) for some function ¢(.) Then

Q(a(a)B(b)) =y(a’~la+b'S"1b),a,b € R



This relation is similar to that in equation (2.1). Arguments similar to those given earlier

show that there exists a constant ¢ such that
(2. 15) (0) exple a'Sla] = /k f(a—x) F(dx),a,b € RF.
R

Note that the expression on the right side of the equation (2.15) is the convolution of the
probability density function f with the distribution function F' . Hence the function on the
left side of the equation (2.15) has to be a probability density function which implies that
c= —# for some 02 > 0 and «(0) is a suitable normalizing constant for the multivariate
normal density function with mean vector zero and the covariance matrix o?%. An application
of the Cramer’s theorem in R* proves that f and F are multivariate normal probability

density function and distribution function respectively with
pf+pr=0

and
Y+ Xp= o2y,

Similar arguments show that ¢ and G are also multivariate normal probability density func-

tion and distribution function respectively with

pg+ e =0

and
Y+ Xg =0’

The converse part of the result in Theorem 2.2 can be established easily. We omit the

details.
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