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Characterization of a Multivariate Normal Distribution

from Samples of Random Size

B. L. S. PRAKASA RAO

CR Rao Advanced Institute of Mathematics, Statistics

and Computer Science, Hyderabad 500046, India

Abstract: We obtain two characterizations of a multivariate normal distribution from sam-

ples of random size.
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1 Introduction

Let Xi, 1 ≤ i ≤ N and Yj , 1 ≤ j ≤ N be two independent samples of independent identically

distributed k-dimensional random vectors with Xi distributed as F and Yj distributed as

G where N is a discrete integer valued random variable independent of Xi, 1 ≤ i ≤ N and

Yj , 1 ≤ j ≤ N. Let

W =
N∑
j=1

[(a−Xj)
′Σ−1(a−Xj) + (b−Yj)

′Σ−1(b−Yj)]

where Σ is a known positive definite matrix for vectors a and b in Rk. Suppose that

E[e−
1
2
W ] = J(a,b) < ∞. We prove that the function J(a,b)) is a measurable function

of the function a′Σ−1a + b′Σ−1b if and only if the distributions F and G are multivari-

ate normal with mean zero vector and common covariance matrix σ2Σ for some constant

σ2 > 1. This result generalizes a similar result in the univariate case by Kotlarski and Cook

(1977). Characterization problems of similar nature for identifiability in stochastic models

are discussed in Prakasa Rao (1992).

2 Characterizations

We now state and prove the main results.

Theorem 2.1: Suppose that the function J(a,b)) = E[e−
1
2
W ] < ∞ for all vectors a and b
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in Rk. Then the function J(a,b)) is a measurable function of the function a′Σ−1a+b′Σ−1b

for a,b ∈ Rk if and only if the distributions F and G are multivariate normal with mean

zero vector and common covariance matrix σ2Σ for some positive constant σ2 > 1.

Proof : It is clear that

E[e−
1
2
W ] =

∞∑
n=1

E[e−
1
2
W |N = n]P (N = n)

=
∞∑
n=1

(E[exp(−1

2
(a−Xj)

′Σ−1(a−Xj))]E[exp(−1

2
(b−Yj)

′Σ−1(b−Yj))])
nP (N = n).

The last inequality follows from the assumption that Xi, 1 ≤ i ≤ N and Yj , 1 ≤ j ≤ N

are two independent samples of independent identically distributed k-dimensional random

vectors independent of the random variable N. Let

α(a) = E[exp(−1

2
(a−Xj)

′Σ−1(a−Xj))]

and

β(b) = E[exp(−1

2
(b−Yj)

′Σ−1(b−Yj))].

Then, it follows that,

E[e−
1
2
W ] = Q(α(a)β(b))

where

Q(x) =
∞∑
n=1

xnP (N = n)0 ≤ x ≤ 1.

Note that the function Q(.) is a strictly increasing continuous function on the interval [0, 1].

Hence its inverse is well defined. Suppose that the function E[e−
1
2
W ] is a measurable function

of the function a′Σ−1a + b′Σ−1b. Then there exists a measurable real-valued function ψ(.)

such that

ψ(a′Σ−1a+ b′Σ−1b) = Q(α(a)β(b))(2. 1)

or equivalently

α(a)β(b) = γ(a′Σ−1a+ b′Σ−1b)(2. 2)

where γ = Q−1oψ for all a,b ∈ Rk. It is easy to see that α(0) ̸= 0 and β(0) ̸= 0 for a = 0

and b = 0. Substituting a = 0 and b = 0 alternately, we obtain that

γ(a′Σ−1a)γ(b′Σ−1b) = α(0)β(0)γ(a′Σ−1a+ b′Σ−1b)(2. 3)
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for all a,b ∈ Rk. Let

θ(t) =
γ(t)

α(0)β(0)
, t ≥ 0.

Note that the function θ(.) is measurable and the equation (2.3) implies that

θ(a′Σ−1a)θ(b′Σ−1b) = θ(a′Σ−1a+ b′Σ−1b)(2. 4)

for all a,b ∈ Rk. Hence the function θ(.) is a measurable function such that

θ(t)θ(s) = θ(t+ s)(2. 5)

for all t, s ≥ 0 since Σ−1 is a positive definite matrix. Therefore

θ(t) = ec t, t ≥ 0(2. 6)

for some constant c. Hence

γ(t) = ec tα(0)β(0), t ≥ 0.(2. 7)

Therefore, for any a ∈ Rk,

γ(a′Σ−1a) = ec a′Σ−1aα(0)β(0),a ∈ Rk.(2. 8)

Note that

γ(a′Σ−1a) = α(a)β(0),a ∈ Rk(2. 9)

from (2.2). Combining the equations (2.8) and (2.9) and noting that β(0) ̸= 0, it follows that

ec a′Σ−1aα(0) = α(a)(2. 10)

=

∫
Rk

exp[−1

2
(a− x)′Σ−1(a− x)]F (dx).

This in turn gives the relation

α(0)

(2π)k/2|Σ|1/2
ec a′Σ−1a =

∫
Rk

1

(2π)k/2|Σ|1/2
exp[−1

2
(a− x)′Σ−1(a− x)]F (dx)(2. 11)

for all a ∈ Rk.The expression on the right side of the equation (2.11) is the convolution of

a mutivariate normal density function with the distribution F. Hence the expression on the

left side of the equation (2.11) also has to be a probability density function which implies

that the constant c = − 1
2σ2 for some σ2 > 0 and α(0) is a suitable normalizing constant.

The characteristic functions of the probability densities on both sides of the equation (2.11),

then, should satisfy the relation

exp[−1

2
(t′Σt)σ2] = exp[−1

2
t′Σt] ϕX(t), t ∈ Rk(2. 12)
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where ϕX is the characteristic function of the random vector X. Hence

ϕX(t) = exp[−1

2
(t′(σ2Σ− Σ)t)σ2], t ∈ Rk.(2. 13)

Since ϕX is the characteristic function of the random vector X, it follows that σ2 > 1 and

the random vector X has the multivariate normal distribution with the mean vector zero and

the covariance matrix (σ2 − 1)Σ. Similar arguments prove that the random vector Y is also

multivariate normal with mean vector zero and the covariance matrix (σ2 − 1)Σ.

The converse part of the result stated in the theorem can be easily verified.

Suppose f and g are probability density functions on Rk. Let

Z = ΠN
j=1f(a−Xj)g(b−Yj),a,b ∈ Rk.

Theorem 2.2: Suppose that the function H(a,b) = E[Z] < ∞,a,b ∈ Rk. Then the

function H(a,b) is a measurable function of the function a′Σ−1a + b′Σ−1b if and only

if the distributions F and G are multivariate normal with mean vectors µF and µG and

covariance matrices ΣF and ΣG respectively and the probability density functions f and g

are multivariate normal probability density functions with mean vectors µf and µg and the

covariance matrices Σf and Σg respectively with

µF + µf = µG + µg = 0

and

ΣF +Σf = ΣG +Σg = σ2Σ

for some σ2 > 0.

Proof : Let α(a) = E[f(a−X)] and β(b) = E[g(b−Y)],a,b ∈ Rk. It is easy to check that

E[Z] =
∞∑
n=1

[E(f(a−X))E(g(b−Y))]nP (N = n)(2. 14)

= Q(α(a)β(b)) (say).

Suppose that E(Z) = ψ(a′Σ−1a+ b′Σ−1b) for some function ψ(.) Then

Q(α(a)β(b)) = ψ(a′Σ−1a+ b′Σ−1b),a,b ∈ Rk.
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This relation is similar to that in equation (2.1). Arguments similar to those given earlier

show that there exists a constant c such that

α(0) exp[c a′Σ−1a] =

∫
Rk
f(a− x) F (dx),a,b ∈ Rk.(2. 15)

Note that the expression on the right side of the equation (2.15) is the convolution of the

probability density function f with the distribution function F . Hence the function on the

left side of the equation (2.15) has to be a probability density function which implies that

c = − 1
2σ2 for some σ2 > 0 and α(0) is a suitable normalizing constant for the multivariate

normal density function with mean vector zero and the covariance matrix σ2Σ. An application

of the Cramer’s theorem in Rk proves that f and F are multivariate normal probability

density function and distribution function respectively with

µf + µF = 0

and

Σf +ΣF = σ2Σ.

Similar arguments show that g and G are also multivariate normal probability density func-

tion and distribution function respectively with

µg + µG = 0

and

Σf +ΣG = σ2Σ.

The converse part of the result in Theorem 2.2 can be established easily. We omit the

details.
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