
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CRRAO Advanced Institute of  Mathematics, 
Statistics and Computer Science (AIMSCS) 

Author (s):               Thiyyagura Kranthi, Siddani Bhaskara Rao and  

                                        Palanisamy Manimaran 

 

Title of the Report:    Identification of synthetic lethal pairs in  

                                        biological systems through network  
                                        information centrality 

  

Research Report No.:   RR2013-07 

 
Date:  June 3, 2013 

Prof. C R Rao Road, University of Hyderabad Campus,  
Gachibowli, Hyderabad-500046, INDIA. 

www.crraoaimscs.org 
 

Research Report 



Identification of synthetic lethal pairs in biological systems 
through network information centrality 

 

Thiyyagura Kranthi1, 2, Siddani Bhaskara Rao1 and Palanisamy Manimaran1,* 

1 C R Rao Advanced Institute of Mathematics, Statistics, and Computer Science, University of 
Hyderabad Campus, GachiBowli, Hyderabad - 500046, INDIA. 

2Department of Biotechnology, School of Life Sciences, University of Hyderabad, Hyderabad - 
500046, INDIA. 

*Corresponding author: Palanisamy Manimaran, Assistant Professor, C R Rao Advanced 
Institute of Mathematics, Statistics, and Computer Science, University of Hyderabad Campus, 
GachiBowli, Hyderabad - 500046, INDIA.  

Phone: +91-9989952362, Fax: +91-40-23013118,  

Email: maran@crraoaimscs.res.in, pa.manimaran@gmail.com 

Keywords: Information centrality, Protein-protein interactions, Synthetic lethality. 

Total no. of words: 3,396 

 

 

 

 

 

 

 

 

 

 

 

mailto:maran@crraoaimscs.res.in
mailto:pa.manimaran@gmail.com


Abstract 

The immense availability of the protein interaction data, provided with an abstract network 

approach is valuable for improved interpretation of biological process and protein functions 

globally. The connectivity of a protein and its structure is related to its functional properties. The 

highly connected proteins are often functionally important and knockout of such proteins leads to 

lethality. In this paper, we make use of a graph information centrality concept for the 

identification of synthetic lethal pairs in biological systems. With the advent of molecular 

networks comprising of normal, cancerous cells, we apply graph centrality based method on 

Human cancer protein interaction network. Our approach effectively predicts the potential lethal 

pairs, which were analogous to the experimental and computational inferences. 

 

1 Introduction 

Majority of the systems either available in nature or manmade are complex. Understanding these 

complex systems requires a bottom up approach i.e. breaking the system into small elementary 

constituents. Mapping out the interactions between these components can be characterized as 

network.  In terms of network, a system is a modeled graph where the nodes are the elementary 

constituents and the edges represent the interactions between them. Networks enable a simple 

and uniform representation of complex structures, processes and finds wide range of applications 

in various fields such as social, physical and biological sciences [1-5]. Structural analysis of 

networks can lead to new insights into complex systems and can be studied through the standard 

models like random, small world, scale free network [6-8]. The topological properties such as 

degree distribution, clustering coefficients, centrality measures, community structures etc. of the 

network models help us to understand the functional properties through their structure [9, 11]. 



The graph centrality measure concept plays a vital role in identifying the potential nodes that are 

functionally important in a network. In the recent past, various centrality measures such as 

degree, closeness, betweenness, Eigen vector, information centrality etc. have been developed 

for predicting the potentiality of a node [12-14]. 

The above mentioned centrality measures aids us in analyzing the various underlying process 

especially of biological networks and also identifies the key players in biological processes. A 

correlation between a node's structural importance in the protein-protein interaction network and 

its functional importance commonly referred as centrality-lethality rule is well understood using 

centrality concepts [15]. In a protein interaction network, the connectivity of a protein is related 

to its functional properties. As evident from the earlier studies, the proteins with the high degrees 

and high centralities are found to be highly essential in the network. Knock out of such essential 

proteins from the genome is more likely lethal to the organism [16-18]. 

 

Synthetic lethality (SL) which may be viewed as an extension of essentiality thus can be clearly 

established using the network centrality concepts. Two genes are said to be synthetically lethal, if 

mutation of either gene alone is compatible with viability but simultaneous mutation of both 

leads to death [19-22]. A large number of studies have been carried out recently in the context of 

synthetic lethality for characterizing the functions of genes in various organisms such as 

Saccharomyces cerevisiae, Zebra fish , Drosophila [23-26] etc. and also for the development of 

drugs for different diseases like Cancer HIV , Mycobacterium tuberculosis [27-29] etc. Many 

experimental and computational methods have been emerged out for the identification of SL 

pairs. The experimental techniques include Kinzler method [30], Cannani method [31], Synthetic 

lethal screens, unbiased chemical and genetic screens [19] etc. The limitations of the 



experimental methods urge for development of computational techniques such as decision trees 

machine learning methods , Simulation of double gene knock-down and assigning each pair a 

synergy score [32-34].Synthetic lethal interactions though identified are difficult to rationalize; 

hence their study is restricted to model organisms such as yeast and bacteria [35]. Lack of 

conservedness in the model organisms provoked the researchers to study the SL pairs in humans. 

In this paper, we make use of the theoretical graph centrality measure i.e., information centrality 

for the identification of lethal pairs [13]. Here the information centrality concept is used to 

quantify the relevance of pair of the nodes in the network. Knocking out a pair of nodes 

considerably affects the system as in like the synthetic lethality concept i.e. mutation of both the 

genes leads to death.  We apply this procedure on the Human cancer protein interaction network 

(HCPIN) to identify the lethal pairs for enhancing the personalized cancer therapy. Cancer, a 

dreadful disease is the result of gain of functional mutation of oncogene and loss of functional 

mutation of tumor suppressor genes [36]. Developing drugs that could selectively kill cancerous 

cells without affecting the normal cells remains a considerable challenge. In this context, 

synthetic lethality succors for the development of drugs that could theoretically target cancerous 

cells imposed due to loss and gain of function mutations, while sparing the cells with normal 

copy of mutated cancer relevant genes. 

 

 

 

 

 



2 Methods 

2.1 Data Collection 

For data collection and construction of HCPIN we have followed the procedure adopted by 

Gozde et al [37]. The Human protein–protein interaction (HPPI) data was collected from the 

Human Protein Reference Database (HPRD) [38]. It consists of 9617 proteins with 39240 

interactions. After the removal of self-interactions, palindrome interactions and repeated 

interactions the HPPI network consists of 9454 proteins with 36867 interactions.  A list of 291 

cancer genes was collected from the comprehensive census of cancer gene database provided by 

Futreal and his co-workers [39]. In addition three sets of cancer genes consisting 873 tumor 

suppressor genes,495 oncogenes and 1023 stability genes were collected CancerGene database 

[40]. The tumor, onco and stability gene sets have some of the genes in common and the 

redundant genes of the three sets were omitted, unified to a gene set which then consists of 1927 

genes. The list of 291 cancer genes when combined with 1927 gene set resulted in a unique 

cancer gene list consisting of 2218 cancer genes. 

2.2 Construction of Human cancer protein interaction network  

By mapping the generated cancer gene list on to the HPPI data, only those interactions between 

the cancer genes were considered. Thus we have obtained the HCPIN, from which all the orphan 

nodes were removed and the giant component was considered for further analysis. The resultant 

core HCPIN consists of 1539 proteins and 6471 interactions.  

 

 



2.3 Identification of synthetic lethal pairs using information centrality  

The graph information centrality measures the potential of an individual node based on the 

change in efficiency of the network observed after its knockout [13]. Network analysis of 

biological systems predicts that knocking out a pair of genes have a significant effect on the 

system compared to knocking out a single gene. This approach correlates with the concept of 

synthetic lethality as the lethal pairs are those in which mutation of alone is compatible with 

viability but mutation of both leads to death. Thus, to obtain the synthetic lethal pairs, we have 

modified the above centrality measure by knocking out a pair of nodes. 

 

If G is the graph representing the network, and G´ is the graph after the removal of the nodes ’m’ 

and ‘n', then the information centrality ‘Cm,n’ for the knocked out nodes is given as  
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Where E is the efficiency of the graph, which is a measure of robustness. This quantity is based 

on the assumption that the information/signaling in a network travels along the shortest paths and 

it is defined for a graph G as follows:  

 

E�G�= �
�(���)

∑ �
���

���∈�                                 ------ (іі) 

Here ‘dij’ refers the shortest path between the nodes ‘i’ and ‘j’, where ‘N’ represents the total 

number of nodes in the network. 

The detailed procedure for identifying and ranking of the synthetic lethal pairs is as follows: 



1. Calculate the overall efficiency E [G] of the network. 

2. Knock-out a pair of nodes at random and calculate the efficiency of the network E [G′]. 

3. Calculate the drop in the efficiency of network using equation (i). 

4. Repeat from step (ii) for all the possible pair of nodes. 

Using the above procedure we have ranked the lethal pairs for HCPIN.  

3 Results 

3.1 Human cancer protein interaction network 

The HCPIN, constructed by mapping the cancer genes on HPPI data consists of 1539 proteins 

with 6471 interactions. We found that degree distribution of HCPIN possess power-law behavior 

which is evident from its degree scaling exponent 1.71. The other topological properties such as 

average degree 23.67, average clustering coefficient 0.1418, and assortivity coefficient 0.4706 

also were calculated. The diameter and the efficiency of the network were found to be 10 and 

0.2952. 

3.2 Synthetic lethality in HCPIN 

Using our approach we have calculated the information centrality scores for all the possible 

pairs. We have ranked these pairs based on their scores i.e. in the order of the effect produced by 

them on the network by their knock out. The obtained pairs showed a significant variance in drop 

in their efficiency and the same is clearly represented in the figure 1.The ranked gene pairs that 

showed a transition in the centrality scores were enumerated and found to be nearly 100 and 

these pairs were considered for our further analysis. We have observed that all the pairs were 

found to impose a profound effect on the network when knocked out as a pair satisfying the 



paradigm of synthetic lethality. Interestingly, the l00 pairs were composed of tumor and 

oncogene as the interacting partners. Hence, we consider the above 100 pairs to be synthetically 

lethal/sick. The list of these top 100 SL pairs and the type of cancers associated with them was 

provided in the supplementary information 1 and 2 respectively. 

 

Figure 1: The main graph depicts the ranked centrality scores for all the possible pairs of 

HCPIN. The inset graph shows the transition in the centrality score near top 100thpair and these 

pairs were considered for our analysis. 

 

3.3 Analysis of top 100 lethal pairs 

The analysis of top 100 lethal pairs of HCPIN yielded some alluring information; we have found 

out that 97 pairs possess the tumor suppressor protein, ‘TP53’ as an interacting partner with the 

cancer relevant gene. We have observed that there are many possible shortest paths for a given 



lethal pair with a maximum path length of 3. Out of 100 lethal pairs 33 pairs were found to have 

a direct interaction with its interacting partner. These findings help us to have detailed 

information about the interacting partners between the pairs during drug development. The list 

and the number of possible shortest paths for the 100 SL pairs, with their path lengths were 

provided in supplementary information 3. 

4. Discussion 

With the recent improvements in network biology, the structure of protein interaction networks 

themselves provide valuable information and hence can be used for the identification of SL pairs. 

From our HCPIN analysis we have observed that both the genes of the top 100 lethal pairs, were 

found to participate in the same/compensatory pathways as is evident from their ability to cause 

same type of cancer, thus satisfying the conditions of synthetic lethality. The pharmacological 

approach to treat cancer till date is unclear, because of the induced functional mutation of tumor 

suppressor gene by drugs. Targeting the protein products that are in synthetic lethal interaction 

with non-druggable cancer causing loss of function mutations provides an elegant solution to the 

problem.  

From the literature survey it’s clear that TP53 is mutated in 50% of human tumors, therefore 

synthetic lethality in the context of TP53 loss of function mutations is an important aspect for 

anticancer therapy. This strengthens our results, as 97 0f 100 top lethal pairs consist of TP53 as 

one of the interacting partner with the cancer related genes. Our approach was able to identify 

some experimentally and computationally identified SL interactions of TP53 with BRCA1 [41], 

CDKNA1 (PAK3) [42], and CDKN2A (P19ARF) [43] and MET [44] which are present among 

top 100 lethal pairs. Also we have tried to corroborate through literature survey for validation of 



our approach. The lethal pairs obtained through our method were found to quench the concepts 

of synthetic lethality and some of them were annotated for their lethality as follows 

CTNNB1-TP53: TP53 mutation is frequently associated with CTNNB1 mutation. Accumulation 

of β catenin as a result of CTNNB1 mutation leads to high levels of wild type P53 which 

becomes favorable for tumor cells deficient for functional P53.Thus the gain and loss of function 

mutations of both TP53 and CTNNB1 together eventually leads to tumor progression [45]. This 

implies that CTNNB1 and TP53 can be essentially considered as lethal pair which can be 

effectively targeted in case of Medullo Blastoma anti-cancer therapy, since mutation of either 

gene alone doesn’t contribute for carcinogenesis. 

YWHAG-TP53: YWHAG (14-3-3 gamma) was recently found to have oncogenic activity and 

is observed to be over expressed in Human lung cancers. The 14-3-3 gamma negatively regulates 

the P53 protein that results in   loss of P53 function eventually over-expressing YWHAG [46]. 

Thus the gain of function mutation of YWHAG coupled with the loss of function mutation of 

TP53 promotes lung carcinoma indicating that afore mentioned pair can be considered as 

synthetically sick/lethal. 

EP300-TP53: EP300 modulates P53 pathway at multiple levels. Mutations of P300 could 

disrupt P53 activation, stability and cell cycle arrest thereby promoting carcinogenesis. 

Mutations in P300 and P53 are not mutually exclusive, suggesting that mutation of P300 doesn’t 

abate selective pressure of P53 mutation [47].Hence P300 and P53 with their loss and gain of 

functional mutations can be regarded as Potential synthetic targets for anti-cancer therapy. 

AR-TP53: The loss of function mutation of TP53 leads to over expression of AR through its 

gain of function mutation. Thus the positive feedback regulation of AR produces low levels of 



Androgen and thereby braces the Prostate cancer progression [48, 49].The AR-P53 lethal pair 

can be used as potential markers for prostate cancer. Similarly we have observed that the down 

regulation of BCL2 gene expression because of the loss of function mutation of tumor suppressor 

protein P53and also provokes tumor genesis making the pair essentially lethal [50]. The above 

annotations prove that the pairs obtained through our method are lethal. We were also able to 

identify other potential SL interactions like CTNNB1, YWHAG, EP300, CSNK2A1, and 

SMAD3 with TP53 which were present in top 5 of the 100 synthetic lethal pairs. The list of other 

potential lethal pairs was provided in the supplementary information 1 which can be further 

validated by any of the validation approaches described below. 

Analysis of the expression levels of the intermediary proteins of the lethal pairs helps in further 

validation of lethal pairs. The up regulation of all the intermediary nodes which ensue in the 

shortest paths of lethal pairs (provided in supplementary information 3) indicates the un 

interrupted flow of information and contributes to carcinogenesis which provided with mutation 

information of the pair proves the lethality. Since carcinogenesis is mainly linked with the cell 

cycle progression one can also validate the lethal pairs by considering the list of all the genes 

involved in cell cycle progression, tumor and onco gene pairs and mapping out the interactions 

for the three sets of genes. The analysis of the pathways in which the three gene sets are involved 

helps in commuting further the validation process.  

Our study suggests that, one can specifically kill cancerous cells by targeting the cells consisting 

of a mutant TP53 associated with an oncogene. These circumstances may lead to the 

development of personalized cancer therapy. The approach we employed using the network 

centrality measure was quite efficient for predicting the SL pairs in HCPIN. This sheds light on 

the importance of the network analysis methods in understanding the physiological and 



functional process underlying various biological systems and also for the drug target 

identification for various diseases. Hence, one can use the network based approach in identifying 

the lethal pairs for any other complex systems. 
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