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Abstract—We present a scalable parallel deterministic 
annealing formalism for clustering with cutoffs and position 
dependent variances. We apply it to the “peak matching" 
problem of the precise identification of the common LC-MS 
peaks across a cohort of multiple biological samples in 
proteomic biomarker discovery. We find reliably and 
automatically tens of thousands of clusters starting with a 
single one that is split recursively as distance resolution is 
sharpened. We parallelize the algorithm and compare 
unconstrained and trimmed clusters using data from a human 
tuberculosis cohort. 
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I.  INTRODUCTION  
Big data emerging from different aspects of health and 

“omics” profiling of biological samples in the quest to 
understand disease, require scalable and robust analysis. 
Strategies for early recognition of outbreak of an infectious 
disease and rapid initiation of infection control are of key 
importance in maintaining public health and security. 
International grids connecting healthcare providers, 
surveillance networks, and research labs can therefore be 
rich sources of enormous quantities of specialized data in the 
future course of bio-medicine. An international grid, for 
example, was formed in response to the global epidemic of 
Severe Acute Respiratory Syndrome (SARS) that occurred 
during March to June of 2003. Other such efforts were made 
to tackle diseases ranging from anthrax to small pox. 
Recently the US Centers for Disease Control and Prevention 
announced the advance of highly drug-resistant bacteria 
which could be cause for global concern. As biomarker 
discovery and deployment of tests are not easy, preparedness 
for diseases that can spread quickly and relatively easily, 
such as among connected populations, require concerted 
algorithmic approaches that combine efficient diagnostics, 
scalable analytics and suitable medical response.    

 

Not surprisingly, few algorithmic frameworks are 
available to analyze large amounts of data, possibly spanning 
many samples and cohorts, to aid scalable and distributed 
mechanisms of performing key tasks such as biomarker 
discovery, or diagnostic testing of specific proteins [1-7]. 
During the SARS outbreak, the “gold standard” of the time 
for lab diagnosis of the coronavirus infection was antibody 
detection by ELISA, a process that included the median time 
to seroconversion in SARS patients of 17–20 days following 
the onset of symptoms, making rapid diagnosis almost 
impossible. Proteomic fingerprints of biomarkers, such as by 
SELDI methods were, however, reported to provide sensitive 
and specific diagnostics for SARS without the need for high-
level biosafety facilities in just 3 hours of testing [8]. 

Proteomics is clearly among the most commonly used 
technologies in the labs worldwide both for biomarker 
discovery—often by looking at many thousands of markers 
in readily accessible biofluids—as well as diagnostic testing 
based on targeted detection of specific proteins. The 
workhorse of proteomics is the high mass accuracy, high 
resolution and high-throughput platform of Mass 
Spectrometry (MS), often preceded by separation techniques 
such as Liquid Chromatography (LC). A typical LC-MS 
analysis of a digested sample, containing a mixture of 
peptides, results in a data set containing tens to hundreds of 
thousands of “peaks” which represent the peptides. Hence 
each LC-MS sample for a cohort consists of 2-dimensional 
data arising from a list of peaks specified by points (m/Z, 
RT), where m/Z is the mass to charge ratio, and RT the 
retention time for the peak representing by a peptide. 

Abundance of peaks in “label-free” LC-MS enables large 
scale comparison of peptides among groups of samples. In 
fact when a group of samples in a cohort are analyzed 
together, not only is it possible to robustly “align” or cluster 
the corresponding peaks across samples, but also enables the 
search for patterns or fingerprints of disease states which 
may not be detectable in individual samples. This property of 
the data lends itself naturally to big data analytics for 
biomarker discovery, and is especially useful for population-
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level studies with large cohorts as in the case of infectious 
diseases and epidemics. With increasingly large-scale studies 
the need for fast yet precise cohort-wide clustering of large 
numbers of peaks assumes technical importance. In 
particular, a scalable parallel implementation of a cohort-
wide peak clustering algorithm for LC-MS based proteomic 
data can prove to be a critically important tool in the clinical 
pipelines for responding to global epidemics such as 
infectious diseases like tuberculosis, influenza, etc.  

Here we present a new scalable parallel deterministic 
annealing based peak clustering algorithm DAVS(c) for 
identifying and characterizing very large number of peptides 
across a significant dynamic range over a big cohort of 
samples. This extends the work in [9] to a scalable integrated 
parallel formulation. Other current best practice approaches 
to LC-MS [6, 7] also do not exploit parallelism. By 
clustering with cutoffs [10-12] (denoted by c) that constrain 
each cluster’s variance dependent on its position, our 
algorithm can automatically identify peaks with desired 
precision across big cohorts of samples, enabling disease 
versus normal comparisons, or monitoring progression of 
disease. The resulting discriminatory peaks could 
subsequently be used for their diagnostic value. We applied 
DAVS(c) to real-world cohorts of clinical plasma samples 
from tuberculosis patients, and observed that its performance 
was favorable in comparison to other common approaches. 
Not only did DAVS(c) manage to trim clusters with 
precision and rigor, but we also verified the accuracy of the 
output using landmark peaks obtained by peptide sequencing 
by tandem mass spectrometry (MS/MS).  It extends earlier 
work [13-15] on basic clustering to add cutoff clusters and 
parallelism. It also addresses special features of the LC-MS 
problem including the very different scales in the m/Z and 
RT dimensions. The large number of clusters (around 30,000 
with two or more peaks derived from a sample with a quarter 
of a million peaks) also requires new approaches to the 
parallel algorithm discussed in [16-19] to get efficient 
scalable performance. Further most of this previous parallel 
work was not focused on vector space problems but rather on 
non-metric spaces [20] extending methods introduced in [21] 
with at most around 100 clusters. 

The next section describes the formalism while section 
III evaluates the technical performance (parallel speedup); 
and section IV examines the proteomics functionality while 
analyzing a large sample of data. Conclusions summarize the 
paper with related clustering work described in section II. 

II. PARALLEL DETERMINISTIC ANNEALING CLUSTERING 
WITH CUTOFF 

Deterministic annealing has been successful in many 
applications [9, 10, 12, 15, 17-31] and is motivated by the 
same key concept as the more familiar simulated annealing 
method for optimization problems. At high temperatures 
systems equilibrate easily as there is no roughness in the 
energy (objective) function. If one lowers the temperature on 
an equilibrated system, then it is a short well-determined 
path between minima at current temperature and that at 
previous temperature. Thus systems which are equilibrated 
iteratively at gradually lowered temperature, tend to avoid 

local minima. The Monte Carlo approach of simulated 
annealing is often too slow, and so in deterministic annealing 
integrals are performed analytically. In many examples as in 
example here T is essentially a distance resolution; at large 
temperatures all clusters are merged together and they 
emerge as one looks at the system with sharper resolution as 
temperature decreases. 

Consider a Hamiltonian H(χ, ϕ) which is to be 
minimized with respect to variables χ and ϕ. Then 
deterministic annealing is based on averaging with the Gibbs 
distribution at Temperature T.  

 P(χ, ϕ)  = exp( - H(χ, ϕ) / T) / ∫ dχ exp( - H(χ, ϕ) /T) (1) 
and one minimizes the Free Energy F combining 

Objective Function H and Entropy, 
 F = < H - T S(P) > = ∫ dχ [P(χ)H + T P(χ) lnP(χ)] (2) 
One obtains an EM (Expectation Maximization) method 

with the variable set χ subject to annealing and determined 
by 

 χ = <χ> |0 = ∫ dχ χ P(χ)  (3) 

And this is followed by the M (maximization) step which 
determines the remaining parameters ϕ optimized by 
traditional methods. Note one iterates over temperature 
decreasing it gradually, but also iterates at fixed temperature 
until the EM step converges.  

Consider a clustering problem with N points (peaks in 
LC-MS application) labeled by x with position X(x) and K 
clusters labeled by k. Let clusters have standard deviation 
σ(k) and center Y(k). The annealed variables χ are Mx(k), 
which are the probabilities that the point x belongs to cluster 
k with constraint for each point x. 

 ∑k=1
K Mx(k) = 1 (4)  

 Let ρ(z, σ) = 0.5 ∑i=1
d (zi/σi)2  (5) 

with vector dimension d for X(x) and Y(k) with d = 2 in 
example given in this paper. 

Define the clustering Hamiltonian [10] 

 H = ∑k=0
K ∑x=1

N Mx(k) f(x, k) (6) 
with for k >= 1   f(x, k) = ρ( X(x) - Y(k), σi (k)) (7a) 
and  for k=0,      f(x, 0) = 0.5 c2 independent of  x. (7b) 

Then as |X(x) - Y(k)| increases, f(x, k) becomes larger 
than f(x,0) which we term the sponge as it absorbs all points 
outside all clusters (X(x) - Y(k) / σ(k)2 > c2 for all k > 0. Note 
there is only one sponge but multiple conventional clusters. 
An important innovation introduced by Rose [15] is the use 
of an intrinsic probability p(k) for each cluster k satisfying 

 ∑k=0
K p(k) = 1 (8) 

One can understand this as corresponding to a large 
number Λ (much larger than current number of centers K) of 
clusters with a number p(k) Λ of them at each center. This 
allows one to split centers cleanly as one takes the number 
p(k) Λ at a center position and divide in two when cluster 



with this center splits. Without this approach, splitting is 
inelegant as otherwise the formalism naturally gives half a 
cluster at each center. The p(k) are given below and are 
viewed as one of variables ϕ determined at the M step of EM 
method. In this case, the Free Energy F is given by 

 F = - T ∑x=1
N ln ∑k=0

K p(k) exp( - f(x, k) /T ) (9) 

Now we use (3) to determine the annealed variables 
<Mx(k)> and in this case, the integrals can be done exactly as 
Hamiltonian is a quadratic. We describe how to tackle the 
case with more complicated forms for H and intractable 
integrals elsewhere [18, 20]. This is followed by an M step 
with a simple minimization to find the ϕ variables which are 
Y(k) and p(k) in this case, subject to equation (8). We 
introduce auxiliary variables Zx given by 

 Zx = ∑k=1
K p(k) exp( - (X(x) - Y(k))2 / (2 σ(k)2 T)  )  

                 + p(0) exp( - c2/(2 T)) (10)  (10) 

Then the annealing gives 

for k = 0  < Mx(0)> = p(0) exp( - c2/(2 T) ) / Zx (11a) 
and for k > 0  
< Mx(k)> = p(k) exp( - (X(x) - Y(k))2 /(2 σ(k)2 T) ) / Zx (11b) 

 With the center positions and probabilities given by 

 Y(k) = ∑x=1
N < Mx(k)> X(x) / ∑x=1

N < Mx(k)> for k ≠0 (12)    
 p(k) = ∑x=1

N <Mx(k)> / N (13) 

 Note in the conventional formalism p(k) = 1, small 
clusters contribute similarly in magnitude to a big cluster in 
Zx which appears in denominators like (11b). In (13), the 
cluster probability p(k) is the fraction of points in the k’th 
cluster and this implies that in (10), clusters are weighted 
according to their size which is intuitively attractive. The 
sponge k=0 is rather different from the other clusters as it 
will not be split and will dominate equation (8) in the case of 
very many individually small clusters k if we use (13) for it. 
So we modified (13) with a fixed p(0) that we did not vary at 
M step. 

As explained in detail in earlier papers [15, 20], the 
minimized free energy (9) will exhibit instabilities 
corresponding mathematically to second derivatives that 
have negative eigenvalues. These are phase transitions in a 
physics terminology [14]. One can calculate the second 
derivatives of F straightforwardly 

∂2F/∂Yi(λ) ∂Yj(µ)   =   δij  δµλ ∑x=1
N < Mx(λ)> / σi (λ)2 (14a) 

- δµλ ∑x=1
N (Yi(λ)) - Xi(x)) (Yj(µ)) – Xj(x)) < Mx(λ)> 

            / (Tσi (λ)2σj (µ)2)  (14b) 
+ ∑x=1

N (Yi(λ)) - Xi(x)) (Yj(µ)) – Xj(x))  
                   < Mx(λ)>< Mx(µ)> / (Tσi (λ)2σj (µ)2) (14c) 

Interestingly the formula is independent of p(k) and 
sponge term as long as we express in terms of fractional 
probabilities <Mx(k)>. Equation (14) has a reasonable 

structure with (14b) negative and increasing in importance as 
T decreases. One examines (14) for instabilities separately 
for each cluster λ = µ  running from 1 to K. It is easy to see 
that elongated clusters will have large values of the term 
(14b) and these will naturally split first as T decreases. Note 
as T decreases the exponential in terms like (10) and (11) can 
lead to arithmetic errors. This was avoided by both testing on 
exponent and checking for overflow. 

The equations above are solved by starting with one 
cluster at large T∞ which is determined from (14) to be so 
large that it is above the phase transition temperatures. The 
precise value is not important as the computation runs so fast 
with one cluster that this stage of the computation takes 
negligible time. Then the temperature is reduced by a factor 
fannealing with the EM steps above converged at each 
temperature. Splitting is checked at each new temperature for 
each cluster. If (14) is singular for cluster λ then this cluster 
is split and given a perturbed position determined by 
direction of the unstable eigenvector of ∂2F/∂Yi(λ) ∂Yj(λ) 
and a magnitude determined so that cluster count ∑x=1

N 
<Mx(k)> will change by a modest amount (~5%) for each of 
two child clusters. This process is continued until reasonable 
termination criteria met. In this problem clusters were not 
split if their average width was small and if they were small 
(these cuts were set differently depending on value of cutoff 
c). Also clusters were removed if they were too small or if 
their centers were too close. As seen in Fig. 6, this close 
cluster check was only used at low temperatures i.e. at a 
distance scale when clusters were resolved. Clusters are 
considered final when the freezing factor FF given below in 
(15) is small. Note at convergence <Mx(k)> are either 1 or 
zero whereas at any “non-zero” temperature the <Mx(k)> 
sum to 1 for each k and are interpreted as probabilities that 
are resolved at low temperature.  All clusterings are finished 
with a set of annealing iterations where there is no splitting 
but one just waits that all clusters have “freezing fraction” 
FF < 0.002 (most are much smaller than this). The final 
temperature for this is around T ~ 0.01. 

 FF(k) = ∑x=1
N <Mx(k)> ( 1 - <Mx(k)> ) / N (15) 

The scale represented by sponge cutoff c is much smaller 
than initial temperature T∞ and so we started the clustering 
with no sponge factor and then introduce it a lower 
temperature and in fact anneal it to reach its final value at 
low temperature. In example given later in Fig. 6, the desired 
sponge cutoff of 2 was reached at T = 2 after being 
introduced as a cutoff of 45 at T = 30.  

In the LC-MS problem, the variance in m/Z is much 
smaller than that of RT and if used directly would lead to 
anomalies as formalism designed for circular clusters. So we 
adjusted above formalism to make the variance in m/Z 
anneal from a large value at T∞ to the desired value at T = 12. 
Note that for LC-MS the variances are the “real values” and 
so temperature has a natural scale with T=1 as natural 
“tipping point”. 

The most straightforward parallelism is that of peaks and 
is implemented [20, 25, 26] by uniformly dividing the peaks 



between compute units (processes or threads) when the 
equations above consist of parallel arithmetic and global 
reductions that can be implemented by either MPI or 
iterative MapReduce [17, 32, 33]. This approach works well 
for initial values of temperature up to around 512 clusters. 
However as temperatures decrease the <Mx(k)> change 
character and each point becomes associated with a few 
clusters (an average of 8 out of ~25000 in example below). 
Thus calculating terms like ∑x=1

N <Mx(k)> as a sum over all 
clusters becomes inefficient and an unnecessary memory use. 
Rather one uses a data structure that only keeps the <Mx(k)> 
for clusters whose centers are near each point. Further one 
can exploit parallelism over clusters and both calculate and 
split clusters separately for the above equations in different 
regions. This leads to a familiar “local geometric” structure 
with points divided so nearby points are in the same process 
and local communications are used for point/clusters which 
are near the boundary between geometric domains. In LC-
MS case, this geometric structure was implemented in one 
dimension with m/Z splits. One finds a difficulty as a given 
decomposition may not be best for both point and cluster 
parallelism; this is well known for example in particle in the 
cell computations in scientific simulations. In our current 
results we implement the cluster parallelism for the MPI 
processes but not the thread parallelism. We kept the 
decomposition with equal number of points in each process; 
this led to about a factor of two load imbalance in number of 
clusters. We can improve this but current approach gives 
satisfactory performance for current LC-MS problems. 

In the LC-MS problem, we repeated the steps above 2 or 
3 times to get presented results. After first step, we took the 
peaks assigned to “sponge cluster” (k =0) and identified 
clusters in it that had been incorrectly split in first step. The 
new clusters were merged with those from first step by 
annealing the combined sample starting not at T∞  but rather a 
low temperature T ~ 0.2. This was done at most twice in 
results presented here. 

III. TECHNICAL EVALUATION OF DAVS ALGORITHM 

A. Clustering Methods 
This evaluation section includes several clustering methods. 
There are DAVS(c) which are the parallel multi-cluster 
deterministic annealing introduced in this paper with cutoff c 
so that all clusters are trimmed with all peaks satisfying 
∆2D(x) ≤ c where 

∆2D(x) = ((m/Z|cluster center – m/Z|x )/ δ(m/Z))2 

 + ((RT|cluster center – RT|x )/ δ(RT))2 (16) 

Here previous analysis of the measurement of known peaks 
(landmarks)  gave c(m/Z) = 5.98 10-6 and c(RT) = 2.35 
where δ(m/Z) = c(m/Z) . (m/Z) and δ(RT) = c(RT) are three 
times standard deviation of measurement determined by 
study of landmark peaks. We present results for c = 1, 2 and 
3 although latter case does not appear in all analyses as we 
consider c=3 as so large that many “incorrect” peaks are 
assigned to clusters. This extends Medea, which is the 

trimmed deterministic annealing algorithm described in [9] 
where deterministic annealing is applied separately to each 
trimmed cluster.  
DA2D is the identical parallel multi-cluster deterministic 
annealing algorithm run without any trimming. It is a 
modern implementation of the algorithm introduced in [13-
15]. 
Mclust is a model-based clustering algorithm [34] whose use 
for this problem is described in [9]. 
Landmarks are a collection of reference peaks (obtained by 
identifying a subset of peaks using MS/MS peptide 
sequencing) used to calibrate and evaluate methods. 

B. Computer Systems Used 
We used two Indiana University Clusters Madrid and 

Tempest specified below. These are running Windows HPC 
Server with parallelism from MPI (using MPI.Net [35] on 
top of Microsoft MPI) and TPL [36] for thread parallelism. 
All codes were written in C#. The results should be similar 
on Linux with Java or C++ coding. 

Tempest: 32 nodes, each 4 Intel Xeon E7450 CPUs at 
2.40GHz with 6 cores, totaling 24 cores per node; 48 GB 
node memory and 20Gbps Infiniband network connection 

Madrid: 8 nodes, each 4 AMD Opteron 8356 at 
2.30GHz with 4 cores, totaling 16 cores per node; 16GB 
node memory and 1Gbps Ethernet network connection 

C. DarTB Dataset 
Plasma samples from tuberculosis cases and controls 

were collected at Dar es Salaam, Tanzania, as part of the 
Gates Grand Challenges in Global Health GC-13 project on 
pattern-based proteomic characterization of the 
epidemiology (prevalence and incidence) of diseases of 
major importance in the developing world. The DarTB 
dataset consists of 20 TB case and 20 healthy control plasma 
samples collected at Dar es Salaam, Tanzania. The samples 
were shipped to The Broad Institute where they are run 
through a sample processing pipeline starting with 
immunoaffinity depletion of the top 14 abundant human 
proteins using an Agilent MARS-14 depletion column. The 
depleted plasma is passed through a low molecular weight 
filter and subjected to reduction, alkylation and trypsin 
digestion. The digested sample is then fractionated into ten 
fractions using a basic pH reverse phase column. Fractions 5, 
6, and 7 are analyzed via LC-MS on a Thermo LTQ-FT 
using a 98 min gradient. The resulting 120 raw files were 
analyzed using the algorithms here. The DarTB dataset 
contained a grand total of 653,741 peaks in 6 charge states. 
The full analysis of all data is available [37] but here we 
focus on the largest charge 2 dataset with 241,605 peaks. 

D. Structure of Data 
Figs. 1 and 2 illustrate the nature of the data to be 

clustered. As the error in m/Z is proportional to the inverse 
of this quantity, we define new 2D positions (x, y) rather 
than (m/Z, RT) 

 x =  ln(m/Z) / c(m/Z) 
 y = RT / c(RT) (17) 



 
with c(m/Z) = 5.98 10-6 and c(RT) = 2.35 as discussed below 
(16). By using x and y as defined above, we get reduced 
variables which should give circular clusters with same size 
in each dimension. Note this change of variables is only used 
for display purposes. As described we directly use m/Z and 
RT as coordinates in the clustering and account for position 
dependent error by calculating the value of δ(m/Z) (and the 
fixed δ(RT)) dynamically for each cluster center position. 
The much smaller value of c(m/Z) compared to c(RT), 
makes the reduced space very much larger in x than y 
direction. This would distort the clustering algorithm at large 
temperatures. Thus as described, we anneal the value of 
c(m/Z) starting at “infinite” temperature with a large value.  

E. Parallelism 
Fig. 3 illustrates two aspects of parallel performance. 

Firstly that MPI parallelism outperforms that coming from 
threads (compare green and blue). Secondly that we get 
higher performance (compare red and green) when we use 

the cluster 
parallelism described 
in section II. Figure 3 
only looks at 
parallelism within a 
single 16 core node 
whereas Figs. 4 and 
5 extends this to up 
to 32 nodes where 
the network 
overheads impact 
performance on the 
runs with larger 
parallelism. This is 
especially true on the 
Madrid cluster which 
only has Ethernet 
network links 

whereas Tempest has Infiniband. Again we find MPI 
outperforms threading but as described earlier, we only 
implemented the cluster parallelism (used in all runs in this 
figure) with MPI. Several of these runs use a mix of thread 
and MPI parallelism; threads implement peak parallelism 
and MPI peak and cluster parallelism. All DAVS(3) runs in 
Figs. 3 to 5 used the efficient model where each peak x only 
stores the occupation probability Mx(k) for relevant (i.e. 
nearby) clusters k. Throughout the run (from 1 to around 
25200 clusters in figures), the mean number of clusters 

Figure 2. A tiny fragment of clustered space for a full DAVS(1) run. 
The orange triangles are sponge peaks outside any cluster. The colored 
hexagons are peaks inside clusters with the white hexagons being 
determined cluster centers. Each cluster is colored differently. This 
comes from 241605 peak charge 2 clustering. 

 

Figure 3. Parallelism within a Single 
Node of Madrid Cluster. A set of runs on 
241605 peak data with a single node 
with 16 cores with either threads or MPI 
giving parallelism. Parallelism is either 
number of threads or number of MPI 
processes. 

Figure 1. The DA2D clustering at high temperature with 60 clusters determined from a run from 241605 peak charge 2 data where c(m/z) 
was fixed at 0.005 (a 1000 times its real value) and c(RT) was correctly 2.35. Each of those 60 clusters will eventually be broken into 500 
smaller clusters and spread out along x axis as c(m/z) is annealed to its final much smaller value when the extra factor of 1000 will make the 
the m/z – RT space incredibly elongated. The sponge was not used in this run as it is only introduced at lower temperatures 

 



stored for each peak averaged at most 8 which is < 0.1% of 
average number of clusters.  

Note that parallel clustering has 
a) Inefficiencies in that it is not optimally load balanced. 

We currently decompose problem so there are equal 
number of peaks in each process. This leads to a factor 
of 2-4 variation in number of clusters per node. For 
example the case with 32 MPI processes in Fig. 4 
finishes with an average of 789 clusters per node while 
the minimum number is 511and the maximum 1391. 

b) Efficiencies as it naturally spreads splitting over the full 
region of peaks and this implies that cases with just one 
MPI process (and any number of threads) need slower 
annealing to get same number of clusters as runs with 
more than 4 MPI processes. 

The parallel performance is currently limited by the load 
imbalance effect (a) and MPI communication overheads so 
that 64 way parallelism is good choice for this 241,605 peak 
dataset on Madrid and 120 way (30 Tempest nodes with 4 
MPI processes in each node) gives best speedup on Tempest. 
There is also the usual effects that memory bandwidth limits 
the useful parallelism on each node. We intend tests on 

larger datasets where higher levels of parallelism will be 
optimal. The “production” execution time used in runs 
reported here vary from 2 to 10 hours (dependent on 
annealing schedule) on the 8 node Madrid cluster which has 
rather old (2008) AMD processors. Tempest is a factor 1.8  
faster. 

IV. DAVS PROTEOMICS EVALAUTION 

A. Characteristics of Clustering Solutions 
We present in table 1, some summary statistics over the 

clusterings considered here. We list errors which are just the 
mean squared scaled differences between peaks and cluster 
centers averaged over peaks x in cluster. 

 Error(m/Z) = ((m/Z|cluster center – m/Z|x )/ δ(m/Z))2  (18) 
 Error(RT) = ((RT|cluster center – RT|x )/ δ(RT))2  (19) 
which added together give ∆2D(x) defined in (16). 

Table 1:  Basic Statistics 

Method 
Number  
Clusters 

Number of Clusters with given 
occupation count  

Count > 30 
Scaled Error 

1 2 >2 >30 m/Z RT 

DAVS(1) 73238 42815 10677 19746 1111 0.036 0.056 
DAVS(2) 54055 19449 10824 23781 1257 0.079 0.100 
DAVS(3) 41929 13708 7163 21058 1597 0.247 0.290 

DA2D 48605 13030 9563 22545 1254 0.100 0.120 
Mclust 84219 50689 14293 19237 917 0.021 0.041 
One can calculate a much more reliable mean (as used 

later in comparison with Landmark clusters) by an additional 
cut like ∆2D(x) ≤ 1.2 to remove outliers. 

 

Figure 4. Speedups for several runs on Madrid from sequential 
through 128 way parallelism defined as product of number of threads 
per process and number of MPI processes. We look at different 
choices for MPI processes which are either inside nodes or on 
separate nodes. For example 16-way parallelism shows 3 choices 
with thread count 1:16 processes on one node (the fastest), 2 
processes on 8 nodes and 8 processes on 2 nodes.  

Figure 5. Speedups for several runs on Tempest from 8-way through 
384 way MPI  parallelism with one thread per process. We look at 
different choices for MPI processes which are either inside nodes or 
on separate nodes. 
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Figure 6. Variation of cluster count in DAVS(2) and DA2D as a 
function of the annealing temperature as it is reduced from left to 
right. Changes in strategy give glitches with discontinuity in cluster 
count. Particularly blatant is a crude switching on of a check on 
closeness of cluster centers. The addition of the Sponge (trimming) 
factor has less impact as that effect is itself annealed as described in 
formalism. Note clusters with one member are EXCLUDED from 
DAVS(2) as in Sponge. They are INCLUDED in DA2D 



Note both DAVS(c) and DA2D start with one cluster and 

then split automatically as temperature is reduced. This is 
illustrated earlier in Fig. 1 showing a high temperature with 
60 clusters. Figure 6 shows how the number of clusters 
changes with temperature. The following set of figures 
describe the characteristics of the different solutions. Figures 
7 and 8 plots the squared distance distributions scaled by 
δ(m/Z) for m/Z and δ(RT) for RT in two dimensions i.e. the 
ordinate is ∆2D(x). These include the expectation of a 
Gaussian distribution in ∆2D(x) with standard deviation of 1/3 
in both m/Z and RT. It is normalized at ∆2D(x) ~ 0.5 to the 
DAVS distributions that are similar in value there.  

We note that the four deterministic annealing solutions 
are quite similar at small values of ∆2D(x) ≤ 1 and in each 
case we see a peak above the Gaussian for ∆2D(x) ≤ 0.1. Note 
the parallel DAVS(1) precisely enforces the cut ∆2D(x) ≤ 1.  

Mclust has sharper distributions but as is made clearer 
with later data, it misses several clusters and many peaks that 
are properly associated with a given cluster. Figure 9 shows 
a histogram of occupation counts for the clustering methods. 
Mclust tends to lie below the deterministic annealing 
solutions for the larger clusters as it systemically 
underestimates the peaks in each cluster as shown in rapid 
fall off in ∆2D(x) of Figs. 7 and 8. 

B. Quality of Determination of Landmark Peaks 
 

Table 2: Charge 2 Landmark Peaks   
>3 Peaks in Cluster (at least 3 match) 
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m/Z RT 

241605 DAVS(1) 30424 42815 1025 0.039  0.059 24825 6779 

241605 DAVS(2) 34606 19449 1033 0.044 0.066 25012 7641 

241605 DAVS(3) 28221 13708 1038 0.085  0.112 24939 9825 

241605 DA2D 35472 13134 1033 0.044 0.067 24996 7606 

241605 Mclust 33530 50948 1007 0.035 0.051 23432 4945 

26916 Land 
mark 

1263 228 1034 0.000 0.000 25151 0 

Table 3: Charge 2 Landmark Peaks   
>40 Peaks in Cluster (at least 36 match) 

Method 

Number 
Landmark 

Clusters 
Found 

Scaled Error 
∆2D(x) ≤ 1.2 

# 
Landmark 

Peaks 

# Non 
Landmark 

Peaks m/Z RT 
DAVS(1) 125 0.021 0.028 6468 831 
DAVS(2) 126 0.025 0.032 6563 956 
DAVS(3) 129 0.028 0.041 6695 1093 

DA2D 126 0.025 0.032 6579 964 
Mclust 111 0.021 0.031 5597 584 

Landmark 129 0.000 0.000 6675 0 
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Figure 9. Histograms of number of peaks in clusters for 4 clustering 
methods and the landmark set. Note lowest bin is clusters with one 
member peak, i.e. unclustered singletons. For DAVS these are Sponge 
peaks. 
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4 Clustering Methods: Occupation Count > 5 Peaks 
Squared Distance Peak to Center DAVS(1) 8664

DAVS(2) 8755

DA2D 8749

Mclust 8194

Landmark  996

Gaussian

Method Name Followed
by # Clusters

Figure 8. Histograms of ∆2D(x) for 4 different clusters methods, and 
the landmark set plus expectation for a Gaussian distribution with 
standard deviations given as 1/3 in the two directions. The 
“Landmark” distribution correspond to previously identified peaks 
used as a control set. Note DAVS(1) and DAVS(2) have sharp cut offs 
at ∆2D(x) = 1 and 4 respectively. Only clusters with more than 5 peaks 
are plotted. 
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4 Clustering Methods: Occupation Count > 50 Peaks 
Squared Distance Peak to Center

DAVS(1) 177

DAVS(2) 224

DA2D 225

Mclust 120

Landmark 58

Gaussian

Method Name Followed
by # Clusters

Figure 7. Histograms of ∆2D(x) for 4 different clusters methods, and the 
landmark set plus expectation for a Gaussian distribution with standard 
deviations given as δ(m/z)/3 and δ(RT)/3 in two directions. The 
“Landmark” distribution correspond to previously identified peaks used 
as a control set. Note DAVS(1) and DAVS(2) have sharp cut offs at 
∆2D(x) = 1 and 4 respectively. Only clusters with more than 50 members 
are plotted. 



We analyzed the reliability of determining the known 
Landmark peaks in identical fashion for each clustering 
method. The results are presented in Tables 2 to 5 which 
have different selections on cluster size and on later cut in  
∆2D(x) used to determine cluster centers. The Landmark 
peaks are labeled and we determined for each Landmark 
cluster, the cluster that best matched it for each of 4 
clustering methods. Then we found the center of the cluster, 
which averaged all peaks whose value of ∆2D(x) was ≤ cut 
given in table; this cut improved accuracy (for higher cutoffs 
c= 2 or 3) as recorded in tables 2 and 3 in the scaled error in 
each dimension. Reducing value of this cut increases 
accuracy at cost of reducing number of clusters found as 
shown in tables 4 and 5 which have cut ∆2D(x) ≤ 0.7. The 
tables also record the number of Landmark and Non-
Landmark peaks in each cluster after this cut. The 
Deterministic Annealing methods DAVS and DA2D are 
quite similar with DAVS(3) recognizing more clusters in 
case where we restrict clusters to those with at least 40 
members. However this comes with slightly larger errors. 
The systematics suggest that the methods can be ordered 
DAVS(3), DA2D, DAVS(2), DAVS(1), Mclust in ability to 
identify Landmark clusters with error decreasing as number 
of cluster do. Reducing the cut c in DAVS(c) below 1 or 
similarly adding a low ∆2D(x) cut to a DAVS( c ≥ 1) 
clustering gives results that have errors that are similar to 
Mclust but still find substantially more Landmark clusters 
than Mclust as seen clearly in tables 4 and especially 5. 

 

 
It is interesting that the traditional (deterministic 

annealing) clustering DA2D using a model for cluster shape 
but no cutoff c, can give excellent results shown in tables 3-5 

either by applying a cutoff on ∆2D(x) in cluster center 
determination or by restricting the sample to well determined 
clusters with many peaks such as cut on 40 members in table 
3. Note the selection in tables 3 and 5 required that the 
Landmark cluster had at least 40 peaks, and that after cuts 
the matching DAVS(c), DA2D or Mclust cluster had at least 
36 of the Landmark peaks in it. For Tables 2 and 4, we 
required at least 3 peaks in Landmark cluster and that the 
associated clustering solution also had at least 3 Landmark 
peaks. 

V. CONCLUSIONS 
We have combined results from robust statistics, model-

dependent clustering [38], and parallel computing to produce 
an accurate automatic approach to analyzing a cohort of 
multiple biological samples in proteomic biomarker 
discovery. This required new ideas such as annealing of the 
model (error requirement) and parallelism over both clusters 
and peaks. It also combines into a single system known ideas 
(in the small deterministic annealing community as cited in 
section II) such as intrinsic cluster probabilities p(k) that had 
not to our knowledge been integrated before in a large scale 
parallel “production quality” system. The peaks are found in 
an unbiased way that requires no initial priming (i.e. no 
initial guesses at centers). All clusters are essentially located 
at the overall peak centroid at the start (large temperature) 
and emerge as temperature lowers from examination of the 
stability of existing clusters to splitting as shown in Fig. 6. 
The splitting is determined from the eigenvalues of second 
order Taylor expansion and not as in some approaches by 
trial and error with separated centers. The open source 
software is available [39] although it is now written in C# 
and we are working on a more broadly useful distribution in 
R, Java or C++. There are more details of current analysis 
available at [37]. 

Large-scale proteomic biomarker discovery efforts using 
label-free LC-MS experiments are beset with relatively high 
false-positive rates. The improved performance of DAVS(c) 
in identifying landmark clusters, we hope, will translate to 
lowering false-positive rates in biomarker discovery 
experiments. In addition, the scalable parallel 
implementation will enable analysis of larger and larger 
sample cohorts leading to more robust biomarker discovery. 
As markers discovered using such efforts are validated in the 
laboratory, there will be more data available to directly 
evaluate the effectiveness of our new clustering algorithms  

Furthermore, combining the recent improvements in high 
throughput mass spectrometry with these parallel clustering 
algorithms will empower biomarker discovery with fast 
turnaround times, and moves us a step closer to the promise 
of near real-time response to disease outbreaks.  

Future work will highlight extension of the analysis to 
much larger proteomics datasets and extend our work to 
cloud platforms [32, 33]. Further we will enhance the 
parallel load balancing that needs to reconcile distributions 
that optimize peak and cluster decompositions. This has 
similarities with other better studied parallel algorithms such 
as those used in particle in the cell simulations. We believe 
that large scale data analytics such as that presented here 

Table 4: Charge 2 Landmark Peaks   
>3 Peaks in Cluster (at least 3 match) 

Method 

Number 
Landmark 

Clusters 
Found 

Scaled Error 
∆2D(x) ≤ 0.7 

# 
Landmark 

Peaks 

# Non 
Landmark 

Peaks m/Z RT 
DAVS(1) 1017 0.033 0.050 24650 6330 

DAVS(2) 1020 0.034 0.052 24717 6716 

DAVS(3) 1020 0.075 0.103 24239 8242 

DA2D 1020 0.035 0.054 23691 6709 

Mclust 1005 0.033 0.047 23394 4856 
Landmark 1023 0.000 0.000 24855 0 

Table 5: Charge 2 Landmark Peaks   
>40 Peaks in Cluster (at least 36 match) 

Method 

Number 
Landmark 

Clusters 
Found 

Scaled Error 
∆2D(x) ≤ 0.7 

# 
Landmark 

Peaks 

# Non 
Landmark 

Peaks m/Z RT 

DAVS(1) 125 0.018 0.024 6446 783 
DAVS(2) 126 0.018 0.026 6516 835 
DAVS(3) 128 0.022 0.030 6595 905 

DA2D 126 0.019 0.026 6315 835 
Mclust 111 0.018 0.028 5596 571 

Landmark 128 0.000 0.000 6592 0 



present novel challenges for the parallel computing 
community and we will package kernel versions of software 
to be used in benchmark analyses.  
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