
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CRRAO Advanced Institute of  Mathematics, 
Statistics and Computer Science (AIMSCS) 

Author (s):    M. Sreehari 

 

Title of the Report: Limit laws for maxima of functions of 

independent nonidentically distributed random 
variables 

  

Research Report No.:  RR2014-01 

 
Date:  January 23, 2014 

Prof. C R Rao Road, University of Hyderabad Campus,  
Gachibowli, Hyderabad-500046, INDIA. 

www.crraoaimscs.org 
 

Research Report 



LIMIT LAWS FOR MAXIMA OF FUNCTIONS OF INDEPENDENT

NONIDENTICALLY DISTRIBUTED RANDOM VARIABLES

M. SREEHARI

Visiting Professor, CRRao AIMSCS, Gachibowli, Hyderabad

E-mail: msreehari03@yahoo.co.uk

ABSTRACT

Suppose distribution functions F1, F2, · · · , Fk are in the max domains of attrac-

tion of max stable laws. Let F be a function of the dfs F1, F2, · · · , Fk. We consider

some distribution functions F and investigate conditions on F1, F2, · · · , Fk under

which F belongs to MDA of max stable laws. Sums, mixtures and maxima of

independent random variables are covered by the results proved.

Keywords and Phrases: `-max stable laws, p-max stable laws, General max

stable laws, Domain of attraction, Compositions, Mixtures and Products of distri-

bution functions .

1. Introduction

Consider a collection of distribution functions (dfs) {F1, F2, . . . , Fk}. Suppose each

Fj is in the max domain of attraction (MDA) of a max stable law. Let F be a

function of F1, F2, . . . , Fk. We consider functions F that are dfs and find conditions

on Fj , j = 1, 2, . . . , k so that F belongs to MDA of a max stable law. Some work of

this nature has already been; specifically when F is a composition and when F is a

mixture. See Sreehari and Ravi (2010) and Sreehari et al. (2011). The aim of this

paper is to consider the case when F is a product of dfs Fj . Resnick (1971(a),(b))

has earlier studied this problem. we briefly review Resnick’s work and investigate

the problem in power normalization set up.

To make the paper self contained we present definitions and some important results

that we need concerning `-max stable laws and p-max stable laws. It is known that

if Mn = max (X1, . . . , Xn) , where Xis are independent identically distributed

(iid) random variables (rvs) with df F, and if

lim
n→∞

P

(
Mn − bn

an
≤ x

)
= lim
n→∞

Fn (an.x+ bn) = G(x), x ∈ C(G),

where an > 0, bn ∈ R are norming constants, G is a non-degenerate df and C(G) is

the set of all continuity points of G, then G has to be one of the three types of the

well known extreme value distributions, namely,

the Fréchet law: Φα(x) =

 0, x < 0,

exp(−x−α), 0 ≤ x;

the Weibull law: Ψα(x) =

{
exp(−|x|α), x < 0,

1, 0 ≤ x;
1
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the Gumbel law: Λ(x) = exp(− exp(−x)), x ∈ R.

Here α > 0 is a parameter.

These laws have been called `-max stable dfs in Mohan and Ravi (1993), to em-

phasize that these are obtained as limit laws of linearly normalized partial maxima

of iid rvs and F belongs to the `-max domain of attraction (MDA) of the limit law.

Necessary and sufficient conditions for a df F to belong to MDA of G , henceforth

denoted by D`(G), for each of the three types of `-max stable dfs are well known

and are given below.

Theorem A

Let the right extremity of F be given by r(F ) = sup {x : F (x) < 1}
1. F ∈ D`(Φα) for some α > 0 iff 1 − F is regularly varying with expo-

nent −α, that is, iff limt→∞
1−F (tx)
1−F (t) = x−α, x > 0. In this case, one may take

an = F−(1 − 1
n ) and bn = 0 so that limn→∞ Fn (an.x+ bn) = Φα(x), x ∈ R.

Here F−(y) = inf {x : F (x) ≥ y} , y ∈ R.

2. F ∈ D`(Ψα) for some α > 0 iff r(F ) <∞ and 1− F
(
r(F )− 1

.

)
is regu-

larly varying with exponent −α, that is, iff limt→∞
1−F(r(F )− 1

tx )
1−F(r(F )− 1

t )
= x−α, x > 0.

In this case, one may take an = F−(r(F ) − 1
n ) and bn = r(F ) so that

limn→∞ Fn (an.x+ bn) = Ψα(x), x ∈ R.

3. F ∈ D`(Λ) iff there exists a positive function f such that limt↑r(F )
1−F (t+f(t).x)

1−F (t) =

exp(−x), x ≥ 0, r(F ) ≤ ∞. If this condition holds for some f, then
∫ r(F )

a
(1− F (s)) ds <

∞, a < r(F ), and the condition holds with the choice f(t) =
∫ r(F )
t

(1−F (s))ds

(1−F (t)) . In

this case, one may take an = f(bn) and bn = F−
(
1− 1

n

)
so that limn→∞ Fn (an.x+ bn) =

Λ(x), x ∈ R. One may also take an = F−
(
1− 1

ne

)
− bn, bn = F−

(
1− 1

n

)
. Also,

f(.) may be taken as the mean residual life time of a random variable X given

X > t where X has df F.

Following Pancheva (1985), Mohan and Ravi (1993) studied the limit laws of power

normalized partial maxima of iid rvs and their max domains. It is known, (see, for

example, Mohan and Ravi, 1993) that if, for x ∈ C(H),

lim
n→∞

P

((
|Mn|
αn

)1/βn

sign(Mn) ≤ x

)
= lim
n→∞

Fn
(
αn|x|βnsign(x)

)
= H(x),

where αn > 0, βn > 0 are norming constants, and H is a non-degenerate df, then

H has to be a p-type of one of the six types of p-max stable laws, namely,
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H1,α(x) =

{
0, x < 1,

exp(−(log x)−α), 1 ≤ x;

H2,α(x) =


0, x < 0,

exp(−| log x|α), 0 ≤ x < 1,

1, 1 ≤ x;

H3,α(x) =


0, x < −1,

exp(−| log |x||−α), −1 ≤ x < 0,

1, 0 ≤ x;

H4,α(x) =

{
exp(− log |x|)α, x < −1,

1, −1 ≤ x;

Φ(x) = Φ1(x), x ∈ R;

Ψ(x) = Ψ1(x), x ∈ R.

These have been called p-max stable dfs in Mohan and Ravi (1993), to emphasize

that these are obtained as limit laws of power normalized partial maxima of iid rvs

and F belongs to the p-MDA of the limit law. Necessary and sufficient conditions

for a df F to belong to MDA of H, henceforth denoted as Dp(H) for each of the

six p-max stable dfs are given in Mohan and Ravi (1993). Max domains under lin-

ear and power normalizations have been compared in Mohan and Ravi (1993).(See

Theorem B below). It is shown that if a df F belongs to some max domain under

linear normalization then it necessarily belongs to the MDA of a p-max stable law

and that the converse is not true. So p-max stable laws attract more dfs than `-max

stable laws.

Theorem B Let F be a df. Then

(a) (i) F ∈ D`(Φα)⇒ F ∈ Dp(Φ),

(ii) F ∈ D`(Λ), r(F ) =∞⇒ F ∈ Dp(Φ);

(b) F ∈ D`(Λ), 0 < r(F ) <∞⇔ F ∈ Dp(Φ), r(F ) <∞;

(c) F ∈ D`(Λ), r(F ) < 0⇔ F ∈ Dp(Ψ), r(F ) < 0;

(d) (i) F ∈ D`(Λ), r(F ) = 0⇒ F ∈ Dp(Ψ)

(ii) F ∈ D`(Ψα), r(F ) = 0⇒ F ∈ Dp(Ψ)

(e) F ∈ D`(Ψα), r(F ) > 0⇔ F ∈ Dp(H2,α)

(f) F ∈ D`(Ψα), r(F ) < 0⇔ F ∈ Dp(H4,α).

The theory concerning max stable laws can be presented in greater generality than

above.
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Definition 1: A df H is said to be max stable if for every positive integer n

there exists a strictly monotone continuous transformation fn(x) such that

Hn (fn(x)) = H(x) ∀x ∈ R.

Pancheva (1985) proved that the class of max stable laws is given by the two pa-

rameter family H(x) = exp (− exp (−c.h(x))) , where 0 < c ∈ R and h is a strictly

increasing invertible continuous function in S(H), the support of H. A df H is

max stable iff Hr is max stable for r > 0. This class of distributions, called general

max stable laws, naturally contains both the well known extreme value distributions

(Fréchet, Weibull and Gumbel types) as well as the six p-max stable laws derived by

Pancheva (1985). The transformation fn(.) is given by h−1 (h(.) + log n) . Pancheva

proved that the class of possible limit distributions of normalized maxima of iid rvs

coincides with the class of general max stable laws.

Definition 2: A df F is said to belong to the MDA of general max stable law H

if there exists a sequence of strictly monotone continuous transformations {gn(.)}
such that

Fn (gn(x))
w→ H(x),

where gn(.) is such that gλ(x) = limn→∞ g−1
mn (gn(x)) , with mn < n, mnn → λ, and

gn(.) considered as a function of λ is solvable, i.e., gλ(x) = t has a unique solution

λ = ḡ(x, t). Sreehari (2008) proved a necessary and sufficient condition for a given

df F to belong to the MDA of H.

Section 2 contains a few lemmas needed for the analysis. In Sections 3 and 4 we

briefly discuss the problems concerning convolutions and mixtures respectively. In

section 5 we consider products of dfs.

2. Preliminary Lemmas

Here we give a few lemmas which will be used later.

Lemma 2.1 For independent rvs X, Y, and t > 0,

P (X + Y > t) ≥ P (X > t(1 + ε))P (| Y |< tε)

+ P (Y > t(1 + ε))P (| X |< tε), ε > 0,

and

P (X + Y ≥ t) ≤ P (X > t(1− ε))
+ P (Y > t(1− ε)) + P (X > tε)P (Y > tε), 0 < ε < 1

2 .

Lemma 2.2 For independent nonnegative rvs X, Y and t > 0,
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P (X + Y ≤ t) ≤ P (X ≤ t(1 + ε))P (Y ≤ t(1 + ε)), ε > 0.

Lemma 2.3 For independent nonnegative rvs X, Y and t > 0,

P (X + Y ≤ t) ≥ P (X ≤ t(1− ε))P (Y ≤ t(1− ε))
− P (tε < X < t(1− ε), tε < Y < t(1− ε)), 0 < ε < 1

2 .

Lemma 2.4 For independent rvs X ∼ F1 and Y ∼ F2, r(F1 ∗ F2) = r(F1) + r(F2),

and r(F1F2) = max {r(F1), r(F2)} .

Lemma 2.5 (Lemma 4.4.2 in Samoridnitsky and Taqqu (1994)) Suppose X is

a rv with a regularly varying tail, i.e., there is a real number θ > 0 such that

for all x > 0, limt→∞
P (X>tx)
P (X>t) = x−θ. Suppose also that the tail of X domi-

nates the tail of a positive rv Y in the sense that limt→∞
P (Y >t)
P (X>t) = 0. Then

limt→∞
P (X+Y >t)
P (X>t) = limt→∞

P (X−Y >t)
P (X>t) = 1.

3. Results for convolutions

In this section we mainly discuss answers to the following questions.

For independent rvs X and Y,

1. if X ∼ F1 ∈ D`(H1), Y ∼ F2 ∈ D`(H2) for some H1 and H2, under

what conditions the convolution X + Y ∼ F1 ∗ F2 ∈ D`(H) and what dfs H are

possible?

2. if X + Y ∼ F1 ∗ F2 ∈ D`(H) for some df H, then what can we say about the

max domains to which the individual dfs F1 and F2 may belong?

Consider a service center in which the service has two phases which work one

after another for any customer. Suppose the information is available on the max-

imum service times of the two phases on each day for a fixed period. In order to

study the maximum time a customer is likely to spend in the center for service, one

needs the information about the behaviour of the total (unobserved) time for each

customer. Conversely, one may have information on the maximum time any cus-

tomer might have spent on a day in the service center but to study the efficiency

of each of the phases, one needs information on maximum service time a phase

takes for a customer, which may not be available. Thus it is of interest to know the

behaviour of X +Y (∼ F1 ∗F2) given information about X(∼ F1) and Y (∼ F2)

as also the behaviour of X and Y given the information about X + Y.
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Results similar to those above have been obtained for stable laws in Sreehari

(1970), Tucker (1968), etc. There has been some work of this type in some spe-

cial cases. It is known (see problem 25 in Chapter 2 of Galambos (1978)) that

if F1 is the Gamma distribution with parameters n and α (and hence

F1 ∈ Dl(Λ)) and the df F2 is absolutely continuous with r(F2) = ∞ and∫∞
−∞ exp(αy)yn−1dF2(y) < ∞, then F2 ∈ Dl(Λ), and F1 ∗ F2 ∈ Dl(Λ). Also,

if F1 is the standard lognormal distribution and F2 is the standard normal

distribution then Fi ∈ Dl(Λ), i = 1, 2, and F1 ∗ F2 ∈ Dl(Λ).

Theorem 3.1 (Sreehari et al., 2011) For independent rvs X and Y, if X ∼ F1 ∈
D`(Φα), Y ∼ F2 ∈ D`(Φβ), 0 < α ≤ β , then X + Y ∼ F1 ∗ F2 ∈ D`(Φα).

Remark. In view of Lemma 2.5, if X ∈ D`(Φα) for some α > 0, and the

tail of X dominates the tail of a positive rv Y, then X + Y ∈ D`(Φα). Note that

Y need not belong to any `-max domain or Y may belong to D`(Ψα) or D`(Λ).

Note that if X belongs to D`(Φα) and the right extremity of the df of Y is finite,

then the tail of X dominates that of Y and hence by Lemma 2.5, X + Y belongs

to D`(Φα) irrespective of Y belonging to any other max domain.

To address the second question above we give an example to show that F1 ∗F2 ∈
D`(Φα) but both F1, F2 do not belong to D`(Φα). We then give a sufficient condition

for the assertion to hold. Consider independent rvs X and Y with

X ∼ F1(x) =

{
0 if x ≤ 1,

1− 1
x
√

2

(
1 + 1

12 sin(log x)
)

if 1 < x,

Y ∼ F2(x) =

{
0 if x ≤ 1,

1− 1
x
√

2

(
1− 1

12 sin(log x)
)

if 1 < x,

Note that Fi /∈ D`(Φα), since Fi is not regularly varying, i = 1, 2, However,

G = F1 ∗ F2 ∈ D√2(Φα). (For details we refer to Sreehari et al., 2011.)

We now give sufficient conditions for a positive answer to question 2 above.

Theorem 3.2 (Sreehari et al., 2011) For independent rvs X ∼ F1 and Y ∼ F2

with r(F1) = r(F2) =∞, suppose that

lim
x→∞

1− F2(x)

1− F1(x)
= A, 0 < A <∞,

and

lim sup
x→∞

1− F1(xθ)

1− F1(x)
<∞, for all 0 < θ < 1.
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Then,

X + Y ∼ F1 ∗ F2 ∈ D` (Φα) implies Fi ∈ D` (Φα) , i = 1, 2.

Proof is based on Lemma 2.1.

Remarks

(1) If F1 ∗F2 ∈ D`(Φα) then r(F1 ∗F2) =∞. So, either only r(F1) =∞ or

only r(F2) =∞ or both r(F1) =∞ and r(F2) =∞. If only r(F1) =∞
then A = 0 in Theorem 3.2. In this case F1 ∈ D`(Φα) and there is no

need to assume the second condition in Theorem 3.2. Also, F2 /∈ D`(Φδ)
for any δ > 0. However, F2 may belong to D`(Ψδ) for some δ > 0

or F2 may belong to D`(Λ), but satisfying the condition concerning A.

But, if in addition, F2 ∈ D`(G) for some G, then G may be Φβ with

β > α, in view of Theorem 3.1.

(2) If r(F1) <∞ but r(F2) =∞ then F2 ∈ D`(Φα).

Next we consider the MDA of Weibull laws. If r(F1) > 0, r(F2) > 0, then note

that F1 ∗F2 = G ∈ Dl(Ψα) iff 1−G∗(x) = 1−G
(
r(F1) + r(F2)− 1

x

)
is regularly

varying at ∞ with exponent (−α).

Theorem 3.3 (Sreehari et al., 2011) If r(F1) > 0, r(F2) > 0, then note that

F1 ∗ F2 = G ∈ Dl(Ψα) iff 1 − G∗(x) = 1 − G
(
r(F1) + r(F2)− 1

x

)
is regularly

varying at ∞ with exponent (−α).

The proof is based on Lemmas 2.2, 2.3 and Theorem A in introduction.

Our final result of this section is for the case D`(Λ). The result in Galambos (1978)

mentioned earlier pertains to r(F2) =∞. The following result is for the case when

r(F2) <∞.

Theorem 3.4 (Sreehari et al., 2011) Let X be a Gamma rv with probability

density function (pdf) f1(x) = f1(x; p, θ) = θp

Γ(p)e
−θxxp−1, x > 0, where p > 0, an

integer, and θ > 0 are parameters. Let Y be a rv with support in (0, a], a <∞, and

with pdf f2, and let X and Y be independent. Suppose that Z = X + Y. Then the

df G of Z belongs to the MDA of the Gumbel law Λ.

Remarks

(1) In the above theorem, if

(a) Y has uniform df over (0, 1), then Y belongs to the MDA of the Weibull

law, and Z = X + Y belongs to the MDA of the Gumbel law.
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(b) Y has df F2 with 1 − F2(x) = exp
(
− x

1−x

)
, 0 < x < 1, one can

verify that F2 ∈ D`(Λ) using the von-Mises sufficient conditions, and

Z = X + Y belongs to the MDA of the Gumbel law.

(2) From the previous two remarks, we conclude that if X and Y are indepen-

dent rvs with the df of X + Y belonging to the `-MDA of Λ, then it is not

true that the dfs of both X and Y should belong to the `- MDA of Λ.

The above results also hold for convolutions of dfs F1, F2, . . . , Fk, k a fixed posi-

tive integer. Similar results for p-max stable laws are discussed by Sreehari et al.,

(2011).

4. Results for mixtures

Suppose that F1, F2, . . . , Fk are dfs. Set F = p1F1 + · · · + pkFk, where pi >

0, p1 + · · ·+ pk = 1. Then F is a df and we denote the left extremity of a df F by

l(F ) = inf {x : F (x) > 0} . In this section we discuss the following questions.

(1) If Fj is in the MDA of a general max stable law for each j, 1 ≤ j ≤ k, is F

in the MDA of some max stable law H, and if yes, what is the structure of

H?

(2) If the mixture F is in the MDA of a max stable law H, what can be said

about Fj , 1 ≤ j ≤ k?

These problems are of interest in reliability and statistical analysis concerning

mixed populations. Kale and Sebastian (1995) discussed the limit behaviour of the

maximum of sample observations from the mixture distributionG = αF1+(1−α)F2,

where F1 is in the MDA of an extreme value distribution of Gumbel type or Frećhet

type and the support of F2 is (−δ, δ). They were investigating non-normal symmet-

ric distributions with kurtosis 3. AL-Hussaini and El-Adll (2004) also investigated

the problems cited above and their results are somewhat ambiguous and partly

wrong. We give an affirmative answer to the first question above under some

assumptions while the second question has a negative answer. We give some inter-

esting examples in this connection.

Theorem 4.1 (Sreehari and Ravi, 2010) Let F1, . . . , Fk be dfs such that

Fnj (gn(x))
w→ Hj(x), 1 ≤ j ≤ k,

where gn(x) is a strictly monotone continuous function for each n. Let pi > 0, 1 ≤
i ≤ k, and

∑k
i=1 pi = 1. Set F (x) = p1.F1(x)+· · ·+pk.Fk(x). Let S(Hi)∩S(Hj) 6=

φ for 1 ≤ i < j ≤ k. Then as n→∞,

Fn(gn(x))
w→ H(x) =

{
0 if x ≤ max1≤i≤k l(Hi)∏k

i=1H
pi
i (x) if x > max1≤i≤k l(Hi).
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Remarks

1. The above result is essentially the sufficiency part of Theorem 1 in AL-

Hussaini and El-Adll (2004). They also claimed the converse of the above result to

be true. The following examples demonstrate that the converse of Theorem 3.2 is

false in linear normalization setup and nonlinear normalization setup.

2. In case r(Hi) < r(Hj) for some pair (i, j) then the corresponding Hpi
i will be-

come unity in the product term in H.

Next we give two examples that demonstrate that the converse to theorem 4.1

is false in the `-max and non-linear normalization setup.

Example 1. Let

F1(x) =

{
0 if x < 1,

1− x−α.
(
1 + 1

c sin(log x)
)

if 1 ≤ x,

and

F2(x) =

{
0 if x < 1,

1− x−α.
(
1− 1

c sin(log x)
)

if 1 ≤ x, ,

where c > 1 + 1
α . Let

F (x) =
1

2
.F1(x) +

1

2
.F2(x) =

{
0 if x < 1,

1− x−α if 1 ≤ x.

Then F1 and F2 do not belong to the max domain of attraction of any max stable

law under linear norming but

Fn(n
1
α .x)

w→ Φα(x) =

{
0 if x < 0,

exp− (x−α) if 0 ≤ x.

Example 2. Suppose p1 = p2 = 1
2 . Let

Fj(x) =

{
0 if x < 0,

1− 1
(1+x)j

if 0 ≤ x, j = 1, 2.

Then F (x) = F1(x)+F2(x)
2 . Set gn(x) = nx2

1+x , x > 0. Then Fn (gn(x))
w→∏2

j=1H
1
2
j (x), where the max stable law Hj is given by

Hj(x) =

{
0 if x < 0,

exp
(
−x−j

)
if 0 ≤ x.

However, Fnj (gn(x)) does not converge weakly to Hj(x), j = 1, 2.

Remarks

1. In the above example, H(x) = (H1(x).H2(x))
1
2 is a general max stable law
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with the transformation

fn(x) =
nx2 +

√
n2x4 + 4nx2(1 + x)

2(1 + x)

in definition 1.

2. Theorem 4.1 goes through even when F (x) =
∑∞
i=1 pi.Fi(x), pi > 0,

∑∞
i=1 pi =

1 under the additional condition on His that
∑∞
i=1 (1−Hpi

i (x)) < ∞ for

x > sup1≤i<∞ l(Hi). (See, for example, Lemma 6.1, Karlin and Taylor (1975)).

5. Results for products of dfs

Consider the product G = F1F2 of dfs F1 and F2. Then G is a df and 1 −
G = (1 − F1) + (1 − F2) − (1 − F1)(1 − F2). Since (1 − F1(x))(1 − F2(x)) =

o(min {1− F1(x), 1− F2(x)}) the behavor of 1 − F1(x)F2(x) depends only on the

behavior of 1− F1(x) and 1− F2(x). If

lim
x→∞

1− F2(x)

1− F1(x)
= A (5.1)

exists and is finite, 1−G is regularly varying at ∞ with exponent (-α) iff 1−F1 is

regularly varying at ∞ with exponent(-α). If the limit in (5.1) is ∞ then 1−G is

regularly varying at ∞ with exponent (-α) iff 1−F2 is regularly varying at ∞ with

exponent(-α). In particular if F1 = F2 = F , 1 −G is regularly varying at ∞ with

exponent (-α) iff 1 − F1 is regularly varying at ∞ with exponent (-α). If 1 − F1

is regularly varying at ∞ with exponent (-α) and 1− F2 is regularly varying at ∞
with exponent (-β) , 0 < α < β the limit in (5.1) is 0. We then have

Theorem 5.1 For independent rvs X and Y , if X ∼ F1 ∈ D`(Φα) and Y ∼
F2 ∈ D`(Φβ), 0 < α < β, then max(X,Y ) ∼ G = F1F2 ∈ D`(Φα). Further, for a

fixed positive integer k, max(X1, X2, · · · , Xk) ∼ F k ∈ D`(Φα) iff F ∈ D`(Φα).

Remarks

1. In general if α = β

lim
x→∞

1− F2(x)

1− F1(x)

may not exist as one can construct functions 1 − F1 and 1 − F2 both regularly

varying at ∞ but the above ratio oscillating (see, Sreehari, 1973-74).

2. Theorem 5.1 and similar results for `-max setup were discussed in Resnick(1971(a),(b)).

The proofs depend on the tail equivalence property and Khinchine’s convergence

of types theorem (see lemma 1, P. 246, Feller, 1966).
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3. Interestingly Resnick arrived at this problem while investigating the limit

distributions of {Xn}, when the rvs are defined on a finite Markov chain. Prod-

ucts of dfs come up in a natural way in survival analysis. For example, consider

a system with two non-identical components with life-time dfs F1 and F2 working

simultaneously. Suppose the system works as long as at least one of the compo-

nents works and working or non-working status of a component has no impact on

the life-time of the other component. Further suppose administrative policy for the

system is to immediately replace both the components when the system becomes

non-functional. Then the durations between two succesive non-functional situa-

tions of the system follows the df F1F2.

4. Resnick (1971(b)) discussed, with suitable examples, the possibilities (a) of

F1 ∈ D`(Λ) and F2 ∈ D`(Λ) but F1F2 /∈ D`(Λ), and (b) of F1F2 ∈ D`(Λ) but

neither F1 ∈ D`(Λ) nor F2 ∈ D`(Λ).

The main result of Resnick is

Theorem 5.2 Let F1, F2 be dfs and let ϕ be an extreme value distribution.

Suppose F1 ∈ D`(ϕ) and that Fn1 (anx + bn)
w→ ϕ(x) for normalizing constants

an > 0, bn real then Fn2 (anx+ bn)
w→ ϕ∗(x), non-degenerate, iff for some A > 0, B

real

ϕ∗(x) = ϕ(Ax+B), r(F1) = r(F2) = x0,

limx→x0−
1−F1(x)
1−F2(x) exists, and if

(a) ϕ(x) = Φα(x), then B = 0 and limx→∞
1−F1(x)
1−F2(x) = Aα;

(b) ϕ(x) = Ψα(x), then B = 0 and limx→x0−
1−F1(x)
1−F2(x) = A−α;

(c) ϕ(x) = Λ(x), then A = 1 and limx→x0−
1−F1(x)
1−F2(x) = eB .

Next we discuss similar results in the p-max stable setup. Before we proceed fur-

ther we note that in the above result of Resnick one is checking if Fn2 (anx+ bn)
w→

ϕ∗(x) where ϕ∗(x) is of same type as ϕ and the norming constants are same as

those in Fn1 (anx + bn)
w→ ϕ(x). Hence it may seem natural to look for such a

possibility in the p-max setup.

If F1(x) = 0 for x < 1 and = 1− exp(− log2 x) for x ≥ 1, then

Fn1

(
e
√

logn|x|
1

2
√

logn

)
w→ Φ(x),

and if F2(x) = 0 for x < 1 and = 1− 1
x for x ≥ 1,

Fn2 (nx)
w→ Φ(x).
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However, Fn2

(
e
√

logn|x|
1

2
√

logn

)
→ 0 while Fn1 (nx) converges weakly to the df which

is degenerate at 1.

We recall the Remark 2 after Theorem 5.1. In the context of power normaliza-

tion we need a convergence of types theorem (See Lemma 5.1 below). We recall

that Mohan and Ravi defined two dfs F1 and F2 to be same p -type if there exist

positive numbers A,B such that F1(x) = F2

{
A|x|Bsign(x)

}
.

Lemma 5.1 Let U and V be two non-degenerate dfs satisfying V (x) = U(A|x|Bsign(x)), A >

0, B > 0. If for a sequence {Fn} of dfs and constants an > 0, αn > 0, bn > 0, and

βn > 0

Fn
(
an|x|bnsign(x)

)
→ U(x), Fn

(
αn|x|βnsign(x)

)
→ V (x) (5.2)

at all continuity points of U and V , then(
αn
an

) 1
bn

→ A > 0,
βn
bn
→ B > 0 (5.3)

Conversely, if (5.3) holds then each of the two limiting relations in (5.2) holds and

implies the other with V (x) = U(A|x|Bsign(x)).

Proof Suppose the two limiting relations in (5.2) hold with V (x) = U(A|x|Bsign(x)).

Denote support of a df F by S(F ). Suppose S(U) ∩ S(V ) ∩ (0,∞) 6= φ. Let

x′, x′′ ∈ C(U) such that 0 < x′ < x′′ <∞. Then there exist 0 < y′ < y′′ <∞ such

that V (y′) < U(x′) and V (y′′) > U(x′′). Then for sufficiently large n

0 < αn (y′)βn < an (x′)bn < an (x′′)bn < αn (y′′)βn <∞,

which in turn gives the following relations :

(a)
x′′

(y′′)
βn
bn

<

(
αn
an

) 1
bn

<
x′

(y′)
βn
bn

,

and

(b)
βn
bn

>
log x′′ − log x′

log y′′ − log y′
= θ1 > 0,

say.

Next starting with 0 < v′ < v′′ ∈ C(V ) we can find 0 < u′ < u′′ < ∞ such

that for sufficiently large n

0 < an (u′)bn < αn (v′)βn < αn (v′′)βn < an (u′′)bn <∞
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which gives the inequality

(c)
βn
bn

<
log u′′ − log u′

log v′′ − log v′
= θ2

say. From (a), (b) and (c) we observe that
{
βn
bn

}
and

{(
αn
an

) 1
bn

}
are bounded

sequences satisfying

θ1 <
βn
bn

< θ2;
x′′

(y′′)θ2
<

(
αn
an

) 1
bn

<
x′

(y′)θ1
.

In case S(U) ∩ S(V ) ∩ (0,∞) = φ, we may consider continuity points that are

negative and proceed as above and arrive at similar conclusion. Let {n′} ⊂ {n} be

a subsequence for which both the above converge to give

βn′

bn′
→ B∗ > 0,

(
αn′

an′

) 1
b
n′

→ A∗ > 0.

Then Gn′(an′ |x|bn′ sign(x))→ U(x)

while

Gn′(α
′
n|x|βn′ sign(x)) = Gn′

an′ {(αn′
an′

) 1
b
n′

|x|
β
n′
b
n′

}bn′
sign(x)

→ U(A∗|x|B
∗
sign(x)). (5.4)

But by assumption Gn′(α
′
n|x|βn′ sign(x)) → V (x) = U(A|x|Bsign(x)) also. Hence

A = A∗ and B = B∗ proving (5.3). Sufficiency of (5.3) is easily seen from (5.4).

Proceeding as in Resnick (1971(a)) one can get similar results in the p− max set

up. But the proofs are going to be cumbersome. However, we derive results using

Resnick’s results in `− max set up. It will be noted that this method is useful in

case of Fi ∈ Dp(Ψ), r(Fi) <∞ and Fi ∈ Dp(H2,.) and Fi ∈ Dp(H4,.).

Theorem 5.3 Let X and Y be independent positive rvs. If X ∼ F1 ∈ Dp(H1,α)

and Y ∼ F2 ∈ Dp(H1,β), 0 < α < β, then G = F1F2 ∈ Dp(H1,α).

Proof

X ∼ F1 ∈ Dp(H1,α)⇔ logX ∼ G1 ∈ D`(Φα)

where G1(x) = F1(ex). Similarly

Y ∼ F2 ∈ Dp(H1,β)⇔ log Y ∼ G2 ∈ D`(Φβ)

where G2(x) = F2(ex). Since log[max(X,Y )] = max[log(X,Y )], and by theorem 5.1

max(logX, log Y ) ∼ G1G2 ∈ D`(Φα), we have log[max(X,Y )] ∼ G1G2 ∈ D`(Φα)

or equivalently max(X,Y ) ∼ F1F2 ∈ Dp(H1,α).
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Remark If α = β this result may not hold in view of remark 1 following The-

orem 5.1. It will however hold if

lim
x→∞

1− F2(ex)

1− F1(ex)

exists and is finite.

We now give the results for dfs in the MDA of H2,α.

Theorem 5.4 Let X and Y be independent positive rvs. If X ∼ F1 ∈ Dp(H2,α)

and Y ∼ F2 ∈ Dp(H2,β), 0 < α < β and 0 < r(F1) = r(F2) = x0 < ∞, then

F = F1F2 ∈ Dp(H2,α).

Proof By Theorem B, F1 ∈ D`(Ψα), F2 ∈ D`(Ψβ) and r(F ) = x0 by Lemma

2.4. Hence by Theorem A, 1− F1(x0 − 1
x ) is RV (−α) while 1− F2(x0 − 1

x ) is RV

(−β). Then 1 − F1F2(x0 − 1
x ) is RV (−α) and by Theorem A, F ∈ D`(Ψα). By

Theorem B we have the result.

In the case of dfs in the MDA of H3,α, the above line of proof will not work

because Theorem B is not applicable.

Theorem 5.5 Let X and Y be independent negaitve rvs. If X ∼ F1 ∈ Dp(H3,α)

and Y ∼ F2 ∈ Dp(H3,β), 0 < α < β then F = F1F2 ∈ Dp(H3,α).

Proof By theorem 2.3 in Mohan and Ravi (1993), X ∼ F1 ∈ Dp(H3,α) implies

r(F1) = 0 and

lim
t→∞

1− F1(−e−tx)

1− F1(−e−t)
= x−α.

Let Z1 = − log(−X), Z2 = − log(−Y ) and Z = max(Z1, Z2). Then

P (Z1 > tx)

P (Z1 > t)
=

1− F1(−e−tx)

1− F1(−e−t)
→ x−α

as t→∞. Similarly 1−P (Z2 > t) is RV (β) and hence 1−P (Z > t) is RV (α). Thus

with F = F1F2 we have, 1−F (−e−t) is RV (−α). Further r(F ) = 0 by Lemma 2.4.

Hence by theorem 2.3 in Mohan and Ravi (1993) again it follows that F ∈ Dp(H3,α).

Next result deals with the case of Dp(H4,.) and the proof is similar to that of

Theorem 5.4 and we omit the details.

Theorem 5.6 Let X and Y be independent positive rvs. If X ∼ F1 ∈ Dp(H4,α)

and Y ∼ F2 ∈ Dp(H4,β), 0 < α < β and r(F1) = r(F2), then F = F1F2 ∈ Dp(H4,α).
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Ravi (2000) gave an example in which Fi ∈ Dp(Φ), i = 1, 2 but F1F2 /∈ Dp(Φ).

Recall Φ is the fifth p-max stable law. However, using the A-eqivalence property

defined by Resnick (1971(b)), we get some positive results in this context.

Associate with the df F of a rv X, its A-function

AF (z) =
1

z
E(X − z|X > z).

Resnick defined A-equivalence classes of dfs and their role in determining the

`-max stable laws to which products of dfs belong.

Definition 3: Two dfs F1 and F2 are A-equivalent if r(F1) = r(F2) = x0 ≤ ∞ and

AF1
(z) ∼ AF2

(z) as z ↑ x0.

The following result then follows.

Theorem 5.7 Suppose Fi ∈ Dp(Φ), i = 1, 2, 0 < r(F1) = r(F2) <∞. If F1 and

F2 are A-equivalent then F1F2 ∈ Dp(Φ)

Proof Fi ∈ Dp(Φ), i = 1, 2, 0 < r(F1), r(F2) < ∞ ⇔ Fi ∈ F`(Λ), i = 1, 2 by

Theorem B. Then F1F2 ∈ D`(Λ), 0 < r(F1F2) = x0 < ∞ by Resnick (1971(b))

in view of the assumptions that 0 < r(F1) = r(F2) < ∞, and that F1 and F2 are

A-equivalent.

This is equivalent to F1F2 ∈ Dp(Φ) by Theorem B.

On the same lines we have

Theorem 5.8 Suppose Fi ∈ Dp(Ψ), i = 1, 2, r(F1) = r(F2) < 0. If F1 and F2

are A-equivalent then F1F2 ∈ Dp(Ψ).

Remarks

1. The above results have obvious extensions to the case of products of finite num-

ber of dfs.

2. Hebbar (1981) in the linear normalization setup and Ravi (2000) in the power

normalization setup studied the following problem. Suppose {Xn} is a sequence

of independent rvs with corresponding dfs {Fn} such that for each n, the df

Fn ∈ {G1, G2, . . . , Gm}. Suppose that for each n, τk(n) of {F1, F2, . . . , Fn} are
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equal to {Gk, 1 ≤ k ≤ m}. Suppose further that each Gk belongs to the MDA of

some max stable law Hk. Let Mn = max {X1, X2, . . . , Xn}. Will the df F ∗n of

Mn, properly normalized, converge weakly to a proper df, which is a function of

H1, H2, . . . ,Hm ? Note that F ∗n =
∏m
k=1G

τk(n)
k . This problem can be analysed in

the light of above results for products and mixtures. In particular, we have the

following observation comparable to results in Ravi (2000).

Let τk(n)
n → ak, 0 < ak < 1, 1 ≤ k ≤ m. Let G1, G2, . . . , Gm be dfs such that

Gnk (gn(x))
w→ Hk(x), 1 ≤ k ≤ m,

where gn(x) is a strictly monotone continuous function for each n. Let ai > 0, 1 ≤
i ≤ m, and

∑m
i=1 ai = 1. Set G(x) = a1.G1(x) + · · · + am.Gm(x). Let S(Hi) ∩

S(Hk) 6= φ for 1 ≤ i < k ≤ m. . Then by theorem 4.1 Gn(gn(x))
w→ H(x) given

in Theorem 4.1. We also have

m∏
k=1

Gnakk (gn(x))
w→

m∏
k=1

Hak
k (x)

which in turn gives

F ∗n(gn(x)) = P (Mn ≤ (gn(x)) =

m∏
k=1

G
τk(n)
k (gn(x))

w→
m∏
k=1

Hak
k (x).

Conclusions

We reviewed the `-max , p-max stable laws and general max stable laws and their

MDAs. We considered functions of dfs such as the convolutions, mixtures and prod-

ucts of dfs which belong to MDAs of some of these max stable laws and investigated

if these functions belong to MDAs of max stable laws.
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