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Abstract

Approaches based on non-negative matrices or, in particular, on
specialized versions of de Finetti’s theorem, have led to some results
of relevance to damage models, including those on Integrated Cauchy
Functional Equation and Extended Spitzer Integral Representation
Theorem. Now we revisit these results shedding further light on some
of their aspects; in the process of doing this, we observe, amongst
other things, that the latter of the two results referred to here has a
link with the Weyl integral from fractional calculus.

Keywords: Rao’s damage model, Lau-Rao-Shanhag theorems, Spitzer inte-
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matrices, Fractional calculus, Weyl integral, Deny’s theorem, de Finetti’s
theorem, Branching processes, Markov processes.

1 Introduction

The notion of damage models was introduced, giving some motivation and
relevant supporting material, by Rao (1963). This has generated consider-
able interest amongst researchers specializing in characteristic properties of
stochastic models and related integral equations.
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In mathematical terms, a damage model defined by Rao may be viewed as
a random vector (X,Y) with non-negative integer-valued components X,Y
such that Y < X almost surely with 0 < P{Y = X} < 1; in the context of
a damage model, the conditional distribution of Y given X, i.e. any chosen
version of it, is usually referred to as the survival distribution of the model,
and the following as the Rao-Rubin (RR(0)) condition:

P{Y =y} =P{Y =y|X-Y =0}, y=0,1,... . (1.1)

The multivariate versions of the terminologies and certain of their vari-
ations have also appeared in the literature; see e.g. Chapter 7 of Rao and
Shanbhag (1994) or Rao and Shanbhag (2004).

Amongst various important results that one comes across on damage
models, there are those that are due to Rao and Rubin (1964) and Shanbhag
(1977); in particular, from what is observed in the latter article, it follows
that under certain conditions, the problem of identifying the solution to (1.1)
reduces to that of solving a discrete version of an integral equation, studied,
terming it as the Integrated Cauchy Functional Equation (ICFE), in Lau and
Rao (1982). Also, it may be noted here that more general versions of ICFE
have essentially been studied in Chapter 3 of Rao and Shanbhag (1994) and
in other places such as, Shanbhag (1991).

The main result of Shanbhag (1977) subsumes several specialized results,
including that of Rao and Rubin (1964); Chapter 7 of Rao and Shanbhag
(1994) highlights various important results appearing in the literature on
damage models. Included in these, besides the result of Shanbhag and certain
of its extensions and variations, is an extended version of Spitzer’s integral
representation theorem relative to stationary measures of certain discrete
branching processes, with a link to damage models. More recently, Rao and
Shanbhag (2004) have shown that this latter result holds even when one of
the moment assumptions in it, i.e. in the notation used in the literature,
that m* is finite, is dropped.

Rao and Shanbhag [(1994, Section 4.4), (1998), (2004)] and Rao et al.
(2002) have shown explicitly or otherwise that there exist approaches to
damage models based on non-negative matrices or exchangeability, involving
amongst other things, certain special cases of de Finneti’s theorem. Chap-
ters 2 and 3 of Rao and Shanbhag (1994) provide us with further information
on some of the research material met in the references such as Alzaid et al.
(1987b), Rao and Shanbhag (1991) and Shanbhag (1991), involving ideas
based on exchangeability or, in particular, de Finetti’s theorem, to solve cer-
tain versions of Choquet-Deny (1960) and Deny (1961) equations, or their
variations. Also, from the cited literature, it is now evident that we have



proofs based on versions of de Finetti’s theorem or ICFE for certain poten-
tial theoretic results such as Hausdorff’s theorem on completely monotone
sequences, and Bernstein’s and Bochner’s theorems on completely monotone
functions (and hence also, their versions on absolutely monotone functions).

In the paper, we make some new observations on integral equations, of
relevance to damage models, involving partially aspects of non-negative ma-
trices or exchangeability, and show, in particular, that the Weyl integral met
in fractional calculus has a link with the extended Spitzer integral represen-
tation theorem referred to above. We also highlight in this paper some of
the major implications of these findings.

2 Generalized Discrete ICFE with applica-
tion to damage models

Before dealing with the main findings on the generalized discrete ICFE in this
section, we shall briefly revisit an application of such equations to damage
models, met essentially in Rao and Shanbhag (2004, pp. 67-68):

Let S be a countable Abelian semigroup with zero element, equipped with
discrete topology, and v and w be non-negative real-valued functions defined
on S, with v satisfying additionally that v(0) > 0. Note that there are cases
of (S,v.w), in which

v(z) = Zv(m + y)w(y), r €S (2.1)

yeS

Given (S, w), possibly, meeting some additional conditions, the problem
of identifying the (class of ) functions v, for which (2.1) is valid, may be viewed
as that of solving a version of discrete ICFE. Suppose S* C S (not depending
on w) is such that, in the case of supp(w)(= {z : w(z) > 0}) D S*, (2.1)
is met if and only if (iff, for short) there exists a family {e(x,.) : € S} of
non-negative random variables defined on a probability space, meeting the
requirements that e(z,.)e(y,.) = e(x +y,.),z,y € 5, > cqelz, Jw(z) =1

and E(e(z,.)) = Z%; ,o € S. (There is obviously no loss of generality if we
consider in (2.1), in place of v, its normalised version with v(0) = 1.)

Assume now that a : S — (0,00) and b : S — [0,00) are such that
b(0) > 0 and there exists ¢ : S — (0,00) as the convolution of a and b, and
Y and Z are random elements defined on a probablility space, with values
in S, such that



a(y)b(z)

P{Yzy,ZZZ}:g(erZ)C(yJFZ),

Y,z €5,
where {g(z) : x € S} is a probability distribution. If supp(b) D S*, then it
easily follows that

P{Y =y} = P{Y =y|Z = 0}, yes,

iff % x E(e*(z,.)),z € S, where {e*(z,.)} meets the requirements of
{e(x,.)}, referred to above, but, with, for some v > 0, 7.b appearing in
place of w.(Note that by assumption, ¢(z) > a(z)b(0) > 0 for each x € S
and c exists at least in the cases with a,b bounded and ) _qa(x) < oo or
5, esbla) < 50

Let S*(w) be the smallest subsemigroup of S containing {0} U supp(w).
Then, if S = S*(w), the existence of S*, with stated property, is implied by
what is observed as an application of a result on non-negative matrices in
Rao and Shanbhag (1994, pp. 98-99) or by an argument based on a version
of deFinetti’s theorem produced in Rao and Shanbhag (1998, Section 2) to
obtain, essentially, a criterion for the validity of (2.1).

The information that we have gathered above tells us, in particular, that
the following theorem holds; for some results of relevance to this theorem,
see, also, Ressel (1985) and Rao et al. (2002).

Theorem 2.1: Let S be as defined earlier. Also, let v : S — [0,00) with,
v(0) =1, w: S — [0,00) and S*(w) be as defined above. Then

v(z) = Zv(ﬂc +y)w(y), r € S*(w), (2.2)

yes

iff there exists a family {e(zx,.) : © € S*(w)} of non-negative random variables
defined on a probability space, satisfying e(x,.)e(y,.) = e(x + y,.),z,y €
S*(w), e () €@, Jw(x) =1 and E(e(z,.)) = v(z),x € S*(w).

(We use here the notation e again for simplicity, but in a different context.)

Remark 2.1: Theorem 2.2 of Rao and Shanbhag (2004) proved via a simple
version of deFinetti’s theorem, is indeed a corollary to Theorem 2.1 appearing
above in which S = S*(w) = ({0,1,2..})¥ (k being a positive integer). The
cited article obtains (the multivariate versions of) Hausdorff’s theorem on
completely monotone sequences and Rao-Rubin-Shanbhag theorems on dam-
age models, as obvious corollaries to this result; see, also, Rao and Shanbhag
(1994, pp. 166-167) for some relevant findings on damage models.
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Remark 2.2: We can shed further light on the link between Hausdorff’s the-
orem and the specialized version of Theorem 2.1, referred to in the previous
remark. In the case of S = S*(w) = ({0,1,2..})*, w of Theorem 2.1 is such
that w(z) > 0 for each x of length 1, enabling us to define (v*,w*), where
(in obvious notation) for each x(= (x1,%a,..,x1)), v*(x) = v(z) [[F_, w
and w*(z) = w(x) [[_, wy* with w, = w(0y1,....0), 7 = 1,..k, in-
volving the standard notation of Kronecker delta. Suppose in the case of
S = S*(w) = ({0,1,2..1)%, (v,w) satisfies (2.2), then, in the notation of
Rao and Shanbhag (1994, p.75), for each (ni,ns,..,ni) € ({0,1,2..})%, one
can observe inductively (with respect to (my, ma, .., my)) that (2.2) holds, with
((=1)matmettme AT A 0* w*) in place of (v,w) and meeting the condi-
tion that both of its components are non-negative (but, not necessarily with
the first one as non-vanishing or normalized). In view of this, since we have
now also that 3o v (x)w*(z) =3 g > es V(@ +y)w(x)w(y) =1, (in
conjunction with Fubini’s theorem,) Hausdorff’s theorem implies easily the
“only if” part of the specialized version of Theorem 2.1; the “if” part of this
latter result being obvious, we are thus effectively led to a different proof for
a spectalized version in question.

Remark 2.3: The last remark met above tells us that the multivariate gener-
alization of Shanbhag’s (1977) lemma (i.e. Theorem 2.2 of Rao and Shanbhag
(2004)) can also be proved via an approach based on Hausdorff’s theorem,
with the proof simplifying considerably in the univariate case. Also, in view
of what we now know, especially from Rao and Shanbhag (2004, pp.65-66),
the following version of Bochner’s theorem can be dealt with as a corollary not
only to Hausdorff’s theorem, but, also to the extended version of Shanbhag’s
lemma; clearly, Bernstein’s theorem corresponding to completely monotone
functions on (0,00) is an immediate corollary to this.

“Theorem 2.2 A function f : ((0,00))* — [0,00) is completely monotone
iff, for some non-negative measure v concentrated on ([0,00))* and deter-
maned uniquely by f,

f() = / exp{— < o,y >hu(y), € ((0,00)),
([0,00))*

with < .,. > denoting the usual inner product.”

Remark 2.4: Toking a clue from the proof of Corollary 2.1 in Rao and
Shanbhag (2004 ), we note that any completely monotone function f on (0, c0)*
satisfies, for ny,ng,..,ng € {0,1,...} and x1,xs, .., 23 € (0,00),



H(nlan27 cy Ny X1, T2, "7xk)

1/m

1 00
- E Z Z 2im{ H<n1 + 61“17 g+ 5rk7 T+ (Srly; ey T+ 6rky)dy
0

b 5y 8,
+H(ny,ng, . g, o1 4 L g + 22y + R ]

m

where 0, is Kronecker delta and H is so that for ni,nh,..,n, € {0,1,...}
and x'y, xh, ..,z € (0,00),

, 0w 0 . ,

H(nllan,% ..,TL;C,I/D[E;, "7xk) = (_8ZE/1 )TL (—a—%>nkf(l‘/l,[)’},2, 7~rk)

Hence, if f is a completely monotone function on (0,00)%, then H corre-
sponding to it meets the requirements of h of Corollary 3.4.5 of Rao and
Shanbhag (1994), with S*(u) = S. Taking into account this information, in
conjunction with the uniqueness theorem for Laplace-Stieltjes transforms rel-
ative to non-negative measures, it can easily be verified that the theorem for
completely monotone functions on (0,00)*, met in Remark 2.3 above, and its
counterpart for absolutely monotone functions on (—oo,0)¥, hold. Also, that
we have now alternative arguments for proving Theorems 3.5.1 and 3.5.2 of
Rao and Shanbhag (1994), with obvious advantages, especially, in the latter
case, 1s clear.

Remark 2.5: If g is an absolutely monotone function on Hle(o,ar), then
g(efr e, ... %), (6y,...,0,) € Hle(—oo,ln a,), turns out to be absolutely
monotone and implies, in view of the relevant result on absolutely monotone
functions, referred to in the previous remark, that

k k

g(z1, . 2K) = /([O,oo))k<H zr)dv(z), (21, .., 2k) € H(O,ar),

r=1

(in obvious notation) with v as a non-negative measure concentrated on
([0, 00))*. It may now be noted, in particular, that if g has the integral repre-
sentation with respect to v, then, unless v is concentrated on ({0,1,...})%, one
has the existence of positive integers r,r’, so that limzrﬂo(%)”'g(zl, o Z) =

00, contradicting the assertion that g be absolutely monotone on Hle((), ar).
This, in turn, implies that g meets the condition that it is absolutely mono-
tone on [1*_,(0,a,) iff, for some v : ({0,1,..})F — [0, 00),



[eS) 00 k

gz, z) =Y Y (= v a)}) (21, 0m) € [0, a0).

x1=0 z=0 r=1 r=1

The univariate version of the conclusion reached here appears essentially in
Feller (1966, p.222), although the approach used in this case is different.

Taking a clue from Rao and Shanbhag (1994, 4.4.3, iv)), we now give the
following interesting corollary to Theorem 2.1.

Corollary 2.1: Let S, v, w and S*(w) be as in Theorem 2.1. Also, let, for
each x € (S*(w))¢, there be u, : S — [0,00) such that x + supp(u,) C S*(w)
and

v(+y) =Y v +y+ 2)u(2), yes. (2.3)

zes
Then the assertion of Theorem 2.1 holds with S in place of S*(w).

Proof: The “if” part of the assertion follows easily in view of Fubini’s the-
orem. To establish the "only if” part of the assertion, assume then that
the relevant version of (2.2) holds. In view of the validity of the "only if”
part of Theorem 2.1, we can assume the existence of the probability space
and {e(z,.) : € S*(w)} as in the theorem, and extend, for each w (in
obvious notation), e(z,w),x € S*(w), to e(z,w), x € S, such that, for each

z € (57 (w))",
(2. w) = { > yesupp(un) €@ + Y, w)ua(y)  if this i's finite

0 otherwise,

u, being as mentioned in the statement of the corollary. Applying Fubini’s
theorem, it can be seen that if (2.3) is valid,

4
vz + 22 + 23+ 24) = E(H e(z,,.)), T1,To, XT3, Ty € S. (2.4)

r=1

Taking x in place of z; and letting o = x3 = 24 = 0, since v(0) = 1, from
(2.4), it is easily seen that E(e(z,.)) = v(x), x € S. Also, if we now choose
x1,To, T3, Ty € S such that x1 + xo = 23 + x4, (2.4) implies that

E((e(zy,.)e(zs,.) — e(w3,.)e(zy,.))?) =0 (2.5)

and, then, letting 3 = x; + x5 and x4 = 0 in (2.5), that e(xy,.)e(zs,.) =
e(r1+x,.) a.s. Since S is countable, we have hence the existence of a nullset
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N such that for each w € N€ e(xy,w)e(zq,w) = e(x; + 29, w), 1,29 € S.
Redefining then the restriction of e to S x N so as to have for all w € N,
e(z,w) =e(x,wp), x € S, with wg € N¢, we obtain a version of e meeting the
requirements of the “only if” part of the assertion. Hence, it follows that the
result referred to holds and we have the corollary. 0

Remark 2.6: If there exists another family, viz, {u., : x € (S*(w))°} meeting
the requirement of {u, : x € (S*(w))°} of Corollary 2.1, then, denoting, for
convenience, the extension of e to S met in the proof of the corollary, but,
with {ul.} in place of {u.}, by €', it can be seen that (2.4) in the proof of
the corollary remains valid if, for some r, €'(x,,.) appear in place of e(x,,.).
This, in turn, implies then that E((e(x,.)—¢'(x,.))?) =0, x € S, and, hence,
that, for each x € S, e(x,.) =¢'(x,.) a.s.

Remark 2.7: Our goal in this article, or, in particular, in this section, s
not to give an exhaustive review of the potential theoretic results on moments
or Laplace-Steiltjes transforms, but to shed, in a simple way, as much light as
possible on the link between the multivariate version of Hausdorff’s theorem
on completely monotone sequences and a version of ICFE on ({0,1,..})*.
In the process of doing this, we, also, make an effort to highlight the ap-
proaches based on the discrete ICFE for verifying that Bernstein’s theorem
for completely monotone functions on (0,00), and its multivariate extension
appearing in Bochner(1960, pp. 86-87), hold; this has obvious implications
to the versions of the two theorems referred to here, concerning absolutely
monotone functions. For an account of the early research on Bernstein’s
theorem, involving especially, a proof of the theorem based on Hausdorff’s
theorem, we refer the reader to Widder(1946, Chapter 1V, pp. 160-164).
It may also be worth pointing out in this place that the versions of Bern-
stein’s and Bochner’s theorems, for certain absolutely monotone functions
have proved useful in some damage model studies, see, e.g., Rao and Rubin

(1964) and Talwalker (1970).

3 Extended Spitzer integral representation the-
orem and its relation to Weyl integral

Let m € (0,1) and f be the probability generating function (pgf, for short)
of a non-negative integer valued random variable with mean m. Also, let, for
each ¢ € (0,1], U, : [0,1) — [0, 00), with U.(0) = 0 and U.(f(0)) = 1, and for
each c € (0,1), G.:[0,1) — [0, 00) with G.(0) = 1, denote the restrictions to
[0,1) of the generating functions (gf’s, for short) of some sequences {u.(n) :



n=0,1,..} and {g.(n) : n = 0,1, ...} with u.(n), g.(n) € [0,00),n =0,1,....,
respectively. Then, we have the following Theorem 3.1 and Corollary 3.1,
respectively, on the two sets of functions that we have introduced.

Some specialized versions of the results referred to, especially, of Theorem
3.1, or, the results related to these have been dealt with by Spitzer (1967),
Athreya and Ney (1972, Chapter II), Alzaid et al. (1987a) and; amongst
others, by Rao et al. (2002). From the literature, it is now evident that the
functional equations considered in these results are of relevance to the identi-
fiability problem concerning stationary measures of certain discrete branch-
ing processes, or, concerning discrete probability distributions for which a
modified version of the Rao-Rubin condition is met.

That Theorem 3.1 holds is implied, in view of a certain uniqueness prop-
erty, relative to Laplace-Stieltjes transforms, essentially, by what is observed
in Rao and Shanbhag (2004, pp. 69-70), and that Corollary 3.1 follows from
the theorem can be easily seen.

Theorem 3.1: Given f (and hence m € (0,1)) and ¢ € (0,1], any U., of
the form referred to , satisfies

cU.(f(s)) = c+ Ud(s), s €10,1), (3.1)

iff, for some probability measure v on [0, 1),

Uds) = o Ue(s,t)(U(£(0),1)) " *dv(t), s €0,1), (3.2)
where
Uc(s,t) = Z lexp{(B(s)—1)m" '} —exp{—m"""}]c", s,t€]0,1), (3.3)

and B s the unique pgf among those vanishing at s = 0, for which,
B(f(s)) =m B(s) +1—m, s € [0,1]. (3.4)

Moreover, (with f, c fized,) (3.2) specifies a one-to-one correspondence be-
tween the class of functions U, satisfying (3.1) and the class of probability
measures v on [0,1). (For an interpretation of B in branching processes, see
Athreya and Ney (1972, p 17).)

Proof: The first part of the theorem is a reorganized version of Theorem
3.1 of Rao and Shanbhag (2004) and hence that it is valid is obvious. Also,
now it can be easily seen that, for each probability measure v on [0, 1), there
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exists a function U, satisfying (3.2) and hence (3.1). Conversely, for each
U, satisfying (3.1), (3.2) is met with v as a probability measure on [0,1).
Recall now that, if 4 is a non-negative measure on [0, 00) satisfying the con-
dition that, for some open interval I (in R), there exists ® : I — [0, 00)
with ®(6) = f[o,oo) exp{—z0}du(z),0 € I, then ® determines pu. In view of
this, it follows that, under the assumptions implied, for U, satisfying (3.2),
—(B7Y (1 - 0)UYB™ (1 —0)),0 € (0,1), (in obvious notation) determines
Jiowy M~ (U(£(0),))"'dr(t), @ € [0,1), and hence v. This, in turn, con-
firms that the assertion concerning a one-to-one correspondence between the
classes of U, and v, respectively, appearing in the second part of the theorem
is valid.(See Remark 3.4 for further relevant information.) 0J

Corollary 3.1: Given f (and hence m) and ¢ € (0,1), any G, of the form
considered satisfies

& Gc(f(S)) = Gc(s)a s € [07 1)7 (35)

iff, for some probability measure v on [0, 1),

Go(s) = /[0 , Ge(s,1)(Ge(0, 1) Ldu(2), se0,1), (3.6)
where
Go(s,t) = Y c"exp{(B(s) — Lym" '}, s,t€[0,1), (3.7)

with B as in Theorem 3.1. Also, under the assumptions, (3.6) determines a
one-to-one correspondence between the class of functions G, satisfying (3.5)
and the class of probability measures v on [0,1).

Proof: The corollary follows from Theorem 3.1 since there exists a one-to-
one correspondence between the class of U, satisfying (3.1) and G. satisfying
(3.5), determined by

Ue(s) = c(1—c)"H(Ge(s) — 1), s€10,1). O (3.8)

Remark 3.1: Corresponding to each f, we have B (with B(0) = 0 and,)
B(f(0)) =1 —m and hence, for each t € [0,1),

1 ife=1
Uc(f(0),t) = { (1= 1DG(0,8)  ife< 1,
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where Ug(s,t) and G.(s,t) are as in (3.3) and (3.7), respectively. Hence,
as a corollary to Theorem 3.1, it follows that, for each U, for which (3.1)
is met, U.(B~Y(s)),s € [0,1), satisfies the specialized version of (3.1) with
1 —m+ms in place of f(s), and, hence, also that of (3.2) with s in place of
B(s). That an analogous statement is valid for G. is now obvious. Also, we
may stress here that we don’t insist upon restricting to the cases of B with
finite mean in either of Theorem 3.1 and Corollary 3.1; the following simple
example, including that of Harris referred to in Athreya and Ney (1972, p.72)
for ¢ =1, illustrates this point in a simple way:

Example: Let f and B, the corresponding pgf satisfying (3.4), be so that
the latter does not have any restriction on its mean (i.e. on the mean of the
corresponding distribution). Then, U, so that, for each s € [0, 1),

(In (1= B(s))(Inm)™t ifc=1
Uels) = { o(1—¢)"Y(Gu(s) = 1) if ¢ <1,

with G.(s) = (1 — B(s))~ (" 9/Un ™) "satisfies (3.1). Also, G, involved in this
example is a function for which (3.5) is met.

Remark 3.2: Under appropriate assumptions, the classes of U, satisfying
(3.1) and G. satisfying (3.5) are convex possessing extreme points given re-
spectively by (3.2) and (3.6), with v degenerate. The extreme points in the two
cases are given, for each t € [0,1), respectively by Ue.(s,t)(U.(f(0),¢))7!, s €
[0,1) and G.(s,t)(G.(0,t))7", s € [0,1), and we shall refer to these as ex-
tremal functions. (Incidentally, the key observations appearing in this remark
are by-products of Theorem 3.1 and Corollary 3.1, respectively.)

Remark 3.3: If, for c1,co € (0,1), G1., and Gy, denote versions of G,
satisfying (3.5) with ¢ = ¢1 and ¢ = co, respectively, then there ezists a
version Gs ., of G. satisfying (3.5) with ¢ = ¢y¢q, such that

G30105(8) = [ [ Gren (), se[0,1). (3.9)

Corollary 3.1 implies that the product on the right hand side of (3.9) has
a representation of the form of (3.6) with ¢ = cice and v having infinite
support points. Consequently, it follows that (3.9) can’t be valid with G5 .,,
as extremal or a mizture of finitely many extremals.

Remark 3.4: Incidentally, in the argument used to prove the second part
of Theorem 3.1, there is no loss of generality if one assumes that B(s) =
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s. In this case, the argument simplifies and also relates to the one-to-one
correspondence between the extension of U, (in obvious notation) to (—oo, 1)
as an absolutely monotone function, and the measure in its representation
given by Bernstein’s theorem. (For an application of Bernstein’s theorem to
the extension of U., see Alzaid et al (1987a, p.1213)). Given U,, to identify
v in (8.2), it is sufficient to determine the restriction to [1,m™') of the
measure p (in the notation implied in the proof of Theorem 3.1) relative to
—Ul(1 —0),0 € (0,1), or of the measure relative to the representation for
the extension (to (—oo,1)) of U., given by Bernstein’s theorem.( We adopt
in this remark as well as in what follows, the concept of differentiability for
any real-valued function on [ 0,1) in obvious way, classifying the function as
differentiable if it is right differentiable at 0 and its restriction to (0,1) is
differentiable, and use standard notation to denote derivatives in this case.)

Remark 3.5: With obvious changes to a relevant argument in Alzaid et al.
(1987a, p.1212), it can be seen, as a simple corollary to Yaglom’s theorem,
referred to in Athreya and Ney (1972, p.18), that for each U, satisfying (3.1)
and s € [0,1) (with f, as the n'" iterate of f, met in branching processes)
limy, oo *(U(fn(0) + (1 = £,.(0))s) — U(f1(0)) exists and equals U.(B~(s)).
This, in turn, implies, in view of the extended continuity theorem of Feller
(1966, p.433), that U.(B~'(s)),s € [0,1), meets the requirements of U,, sat-
isfying (3.1), with f(s) = 1 —m + ms. Since Remark 2 of Alzaid et al
(1987a), which assumes implicitly (as observed in Remark 3.8 of Rao et al.
(2003)) that f'(0) > 0, applies to the specialized version of f, it follows that
U.(B7(s)),s € [0,1), satisfies (3.2) with B(s) = s. This obviously leads
us to an alternative approach for checking that the “only if” part of the first
assertion of Theorem 3.1 holds.

Remark 3.6: Incidentally, the approach based on Yaglom’s theorem, met
in the previous remark, tells us, in view of (3.4), that, for each s € [0,1],
limy, oo m™™(1 — B(fn(0) 4+ (1 — f,,(0))s)) exists and equals 1 — s.

Remark 3.7: The authors have noticed some blemishes in Rao and Shanbhag
(2004). In particular, in the cited paper, in (1.2) on page 62, “P{X = y}”
should have appeared as "P{Y = y}”, in (i) in the second paragraph on page
63, “(1.1)” should have appeared as “(1.2)”, and in Remark 3.4, appearing
on pages 71 and 72, a correction is needed, such as that line 3 onwards in it,
the places of “U(*c) 7 and “U(*l)” be interchanged, with the specific example of
Uy (on page 72) replaced by that of extremal Uy, .

We shall henceforth restrict to the case with f'(0) = m, i.e. to the case in
which the support of the distribution relative to f is {0, 1}, and understand
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by U. and G., for respective ¢, as those satisfying (3.1) and (3.5) respectively,
with f as mentioned here. Also, following essentially the approach of Alzaid
et al. (1987a, p.1212-1213), given in different notation, to extend U., we can

now extend G. to (—oo, 1), and denoting the relevant extension of G. by é\c,
observe that

~

¢ Go(1 = m + ms) = Ge(s), s € (—o0,1). (3.10)

In the notation, we can then, give the following theorem, linking Theorem 3.1
and Corollary 3.1 to the Weyl integral; for the details of the Weyl integral,
see Oldman and Spanier (1974, p.53).

Theorem 3.2: The assertions that appear below are valid:

(i) Given ¢ € (0,1] and n € {1,2,...}, in each case, U, the function
relative to the n'* derivative of U, is proportional to some G, and,
conversely, each G,n is proportional to Uc(n) relative to some U, and,
if ¢ < 1, also to Gt (in obvious notation) relative to some G..

(ii) If e, € (0, 1) andn is aposztwe integer such that n > (In(% )/ (In(m)),
then, given G’C, there exists a GC/, satisfying (in obvious notation)

Gols) x| G (s =)y NNy, s (—o0,1),
0
(3.11)

involving a version of the Weyl integral, and, conversely, given G,
there exists a G. satisfying the same relation.

Proof: The first part of (i) is obvious, while, its second part follows induc-

tively if we prove it just for n = 1. By Fubini’s theorem, we see (in obvious
notation) that, for each s € [0,1),

| Gontirin = Z<gcm<n— DZ = [ Gonlt =+ )y

n n

_ chm n_l))((l—m+ms) B (1—m)")'

Then defining {u.(n) : n = 0,1,..} such that u.(0) = 0 and {u.(n) : n =
0,1,..} is an appropriate constant multiple of {n"'gun(n —1) :n=1,2,.},
it follows that, by (3.8), U; in this case is proportional to G.,,; if ¢ < 1, we
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have also the existence G, with G/, proportional to G,,. This completes the
proof of (7).

That (i7) follows from Corollary 3.1 is easy to verify. However, we shall
now use a somewhat different approach to show that the assertion is valid.
To do this, we first note that, since G, satisfies (3.10), for each non-negative
integer k, the function @, : R — (0, 00) such that, for each z € R,

By (@) = exp{(k +In c/ln m)x}GH (1 — ),

is periodic with period In (m~!) and continuous. Consequently, it follows that
the integral appearing in (3.11) exists as a positive real function on (—oo, 1)
satisfying (3.10) with ¢’ in place of ¢. Since G. is absolutely monotone on
(—o0, 1), we have, for each non-negative integer k,

@Emk)(s —y) = / agn-i-k'-i-l)(aj — y)da, y € (0,00),s € (—o0, 1),

—0o0

and, hence, by Fubini’s theorem, the function/\deﬁned by the integral in
(3.11), is seen to be proportional to a version of G; this proves the first part
of (i7). To see the validity of the converse statement, let G be arbitrary.
We have then, applying Fubini’s theorem and the first part of (i),

Go(s) :/ GE™ ) (s —y)y 'y
0
> AN(n+n') Y 1 / 1
x [T s = [ ey ey
0 0

= / (/ @g”rn/)(s — 2 —x)z" T ) 2 e
o Jo

o</ @g")(s — 2)2"* Nz,
0

where a = (In ( /))/(ln (m)), n' is the 1nteger replacing n in (3. 11) when the

places of ¢ and ¢ are interchanged, and G is that determined by G / in view
of the relevant version of (3.11). This completes the proof of (ii). O

Remark 3.8: If we take ¢ = m in (3.11), the second part of Theorem 3.2
implies essentially that, in the present case of f, the representation for U, ,
¢ < 1, can be obtained from that for U;.
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