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SPECIAL ISSUE

ON THE FREQUENCY VARIOGRAM AND ON FREQUENCY DOMAIN
METHODS FOR THE ANALYSIS OF SPATIO-TEMPORAL DATA
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In this article, we assume the spatio-temporal process to be intrinsically stationary in time and stationary in space. Our objective
here is to present an alternative way, based on frequency domain methods, for modelling the data. We consider the discrete
Fourier transforms (DFTs) defined for the (intrinsic) time-series data observed at several locations as our data. We use the
well-known property that DFTs are asymptotically uncorrelated and distributed as complex Gaussian in deriving many results.
Our objective here is to emphasize the usefulness of the DFTs in the analysis of spatio-temporal data. Under the assumption of
intrinsic stationarity, we consider the estimation of frequency variogram (FV) and discuss its asymptotic sampling properties.
We show that FV introduced earlier is a frequency decomposition of space–time variogram. The DFTs can be computed very
fast using fast Fourier transform algorithms. Assuming that the DFTs of the incremental process satisfy a Laplacian model, an
analytic expression for the space–time spectral density and an expression for the FV in terms of the spectral density function
for the intrinsic stationary process are derived. The estimation of the parameters of the spectral density is also considered. A
statistical test for spatial independence of spatio-temporal data is proposed.
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1. INTRODUCTION AND SUMMARY

Spatio-temporal data arises in many areas such as agriculture, geology, environmental sciences and finance. Since
the data that come from these areas are functions of both time and space, any statistical method developed must
take into account both spatial dependence and temporal dependence, and any interaction between these two. In
the case of spatial data, the second-order spatial dependence is measured by the second-order covariance function,
and if the spatial process is second-order stationary, then the second-order covariance is a function of spatial lag
only. In the case of spatio-temporal data, the dependence is measured by space–time covariance function; and if
the process is spatially and temporally stationary, then the covariance function is a function of the spatial lag and
temporal lag. These functions are usually estimated under the assumption that the random process is spatially and
temporally stationary.

An alternative second-order dependence measure is the variogram defined for both spatial processes and spatio-
temporal processes. This function is well defined under the weaker assumption of intrinsic stationarity, and in view
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of this, it is widely used in geo-statistics. Its use is strongly advocated by Cressie (1993), Gringarten and Deutsch
(2001) and Sherman (2011) and many others.

If the process is second-order stationary, then there is a one-to-one correspondence between the variogram and
the covariance function. The estimation of the spatial covariance, spatial variogram and their asymptotic sampling
properties has been considered by several authors: Cressie (1993), Yu et al. (2007), Stein (2012), Gneiting et al.
(2001), Huang et al. (2011), Gringarten and Deutsch (2001) and Ma (2005). The literature on the estimation of
space–time covariance function and the space–time variogram is not very extensive in the case of spatio-temporal
random processes. The inclusion of temporal dimension complicates the estimation. The estimation and the sam-
pling properties of the spatio-temporal covariance function have been briefly considered by Li et al. (2007), Cressie
and Huang (1999) and Stein (2005a). See also Stein (2005b).

We may point out that instead of modelling the space–time covariance function (or its spectral density function),
Cressie and Huang (1999) suggest modelling the Fourier transform of the space–time covariance function taken
over space and Stein (2005b) suggests modelling its Fourier transform taken over time, which he defines as the
spectra-in-time approach. The model for this function is described using a temporal spectrum given in terms of
one trigonometric polynomial and a spatial correlation, the dependence of which upon the temporal frequency
is specified in terms of two further trigonometric polynomials. The coefficients are estimated by maximizing the
approximate likelihood and also by the spectral in time approach. In this article, we show by considering an
embedded model and by modelling the discrete Fourier transforms (DFTs) using this embedded Laplacian model
that under isotropy condition, the covariance function evaluated between two DFTs at the same temporal frequency
gives raise to the form suggested by Stein (2005b), one part being a function of the second-order temporal spectral
density and the other part given in terms of the Bessel functions. Because the covariance between the two DFTs
is a real-valued function, under isotropy condition, there is no phase term in the covariance, which is a spectrum
in time.

In this article, our objective is to consider the DFTs of the time series evaluated at Fourier frequencies as our data.
If the observed time-series data are equally spaced, one can use the fast Fourier transform (FFT) algorithm to com-
pute the DFTs. Using the DFTs, we model the data. Subba Rao et al. (2014) and Subba Rao and Terdik (2015) use
the recently defined ‘frequency variogram’ (FV) for the estimation of the parameters of spatio-temporal covariance
function of the process assuming that the DFTs satisfy a complex stochastic partial differential equation.

We show that the spatio-temporal variogram and the FV defined earlier are related. The non-parametric estima-
tion of the FV is considered. Its sampling properties are discussed. Investigation of the sampling properties of the
sample FV is much easier than that of the space–time variogram estimate. We believe that many interesting prob-
lems associated with spatio-temporal random processes can be solved using the frequency domain methods. We
consider here some of these problems.

We now summarize the contents of the article. In Section 2, the space–time covariance function and space–time
variogram are introduced, and their estimation, under the assumption of stationarity, is discussed in Section 3.
The properties of DFTs of stationary spatial processes, spectral representation of the processes are considered in
Section 4. The FV and its relation to the classical spatio-temporal variogram, and the non-parametric estimation of
the FV are considered in Sections 5 and 6, and these are considered under the assumption of intrinsic stationarity
of the process. Assuming that the process is intrinsically stationary, and the intrinsic process satisfies a Laplacian
model, an analytic expression for the spectral density of the intrinsic process is obtained in Section 7. The estima-
tion of the parameters of the spectral density function of the intrinsic process obtained in Section 7 is considered
in Section 8. The FV and its relation to the spectral density function are also considered in Section 8. A test for
spatial independence, based on the properties of complex Wishart distribution, is described in Section 9, and the
test is based on the test for independence by Wahba (1971).

2. SPACE–TIME COVARIANCE FUNCTION AND THE SPACE–TIME VARIOGRAM

Let ¹Yt .s/; s 2 Rd ; t 2 Zº denote the spatio-temporal random process. Two assumptions are often made, which are
important for modelling and prediction. They are that the process is second-order stationary in space and time and

J. Time Ser. Anal. 38: 308–325 (2017) Copyright © 2017 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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310 T. SUBBA RAO AND G. TERDIK

also that the process is isotropic in space. The assumption of stationarity can be sometimes unrealistic. In view of
this, another weaker assumption that is often made is that the process is intrinsically stationary. We note that if the
process is second-order stationary, then it implies that the process is intrinsically stationary. However, the converse
is not true. We say the process ¹Yt .s/º is spatially, temporally second-order stationary if, for all t 2 Z; s 2 Rd ,

EŒYt .s/� D �;

VarŒYt .s/� D c.0; 0/ D �y2 <1;

Cov ŒYt .s/; YtCu.sC h/� D c.h; u/;h 2 Rd ; u 2 Z:

We note that c.h; 0/ and c.0; u/ correspond to the purely spatial, purely temporal covariances respectively.
Without loss of any generality, we assume that � D 0.

The random process is said to be isotropic if

c.h; u/ D c .khkIu/ ;h 2 Rd ; u 2 Z;

where khk is the Euclidean distance. The process is said to be fully symmetric if c.h; u/ D c.�h; u/ D c.h;�u/ D
c.�h;�u/ (Gneiting, 2002). The process ¹Yt .s/º is intrinsically spatially, temporarily stationary if the incremental
process, for u 2 Z;h 2 Rd , Yt .s/ � YtCu.sC h/ satisfies the following (Cressie and Wikle, 2011, p. 315):

E ..Yt .s/ � YtCu.sC h// D 0;

Var Œ.Yt .s/ � YtCu.sC h/� D �.h; u/ <1:

If ¹Yt .s/º is isotropic, then

�.h; u/ D �.khk ; u/;

where �.h; u/ is also known as the structure function (Yaglom, 1987).
The spatio-temporal variogram is defined as

�.h; u/ D 2 Q�.h; u/ D Var Œ.Yt .s/ � YtCu.sC h/� ;

and Q�.u;h/ is defined as the semi-spatio-temporal variogram. We note that one can define the variogram under the
weaker assumption of intrinsic stationarity. In other words, we do not need the assumption of stationarity of the
original processes. This phenomenon of differencing in space to achieve stationarity is similar to what we have in
the case of random processes with stationary increments in time, for instance, the Brownian motion.

Suppose the process ¹Yt .s/º is spatially and temporally stationary, and then we can show

�.h; u/ D 2 ŒVar.Yt .s// � Cov .Yt .s/; YtCu.sC h//�

D 2 Œc.0; 0/ � c.h; u/� D 2 Q�.h; u/;

and we note that there is a one-to-one correspondence between �.h; u/ and c.h; u/ in the case of stationary pro-
cesses. One can show that the covariance function c.h; u/ is positive semi-definite and �.h; u/ is conditionally
negative definite.

3. ESTIMATION OF c.h; u/ AND � .h; u/

Let ¹Yt .si /I i D 1; 2; : : : ; mI t D 1; 2; : : : ; nº be a sample from the zero mean, stationary spatio-temporal random
process Yt .s/. We define the estimates of c.h; u/ and �.h; u/ as follows (see Sherman (2011) for details). Let

wileyonlinelibrary.com/journal/jtsa Copyright © 2017 John Wiley & Sons Ltd J. Time Ser. Anal. 38: 308–325 (2017)
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Oc.h; u/ D
1

jN.h; u/j

X
N.h;u/

ŒYti .si / � NY .si /�ŒYtj .sj / � NY .sj /�;

where

NY .si / D
1

n

nX
tD1

Yt .si /;

and

O�.h; u/ D
1

jN.h; u/j

X
N.h;u/

�
Yti .si / � ŒYtj .sj /

�2
;

where N.h; u/ D
®
.si ; ti /; .sj ; tj /I si � sj D h and ti � tj D u

¯
. The estimator O�.h; u/ is widely known as the

Matheron estimator. In this article, we are assuming that the time-series data observed at allm locations are equally
spaced and also that there are no missing values. It is interesting to investigate the properties of the estimators
proposed here when these assumptions do not hold.

Under certain conditions, Li et al. (2007) have shown that the sample spatio-temporal covariance function
defined earlier is asymptotically normal.

Based on O�.h; u/, Cressie (1993) and Huang et al. (2011) have proposed a weighted least squares criterion for
estimating the parameters of the theoretical variogram �.h; uj�/, and Gneiting (2002) proposed a similar criterion
for estimating the parameters based on the space–time covariance function Oc.h; u/. Subba Rao et al. (2014) have
proposed a frequency domain method for the estimation of the parameters, which is robust against departures from
Gaussianity and also computationally efficient. The method of estimation proposed by Subba Rao et al. (2014) is
similar to the Whittle likelihood approach and is based on the FV, and the proposed criterion is easy to compute and
is based on DFTs. In the following section, we define the FV and derive the sampling properties of the estimator.

4. DISCRETE FOURIER TRANSFORMS AND THE SPECTRAL REPRESENTATION
OF THE PROCESS ¹Yt .s/º

We follow the notation introduced in the paper of Subba Rao and Terdik (2015). Here we briefly highlight and
summarize the results we need for our present purposes, and for further details, we refer to Subba Rao and Terdik
(2015) and the books and papers cited in those papers.

We assume the random process ¹Yt .s/º is second-order spatially and temporally stationary. Therefore, the
process has the spectral representation given by

Yt .s/ D
Z
Rd

Z �

��

ei.s��Ct!/dZy.�; !/;

where s � � D
Pd

iD1 si�i and
R
Rd

represents a d-fold multiple integral, and Zy.�; !/ is a zero-mean complex
valued random process with orthogonal increments and

EŒdZy.�; !/� D 0;

EjdZy.�; !/j
2
D dFy.�; !/;

where dFy.�; !/ is a spectral measure. If we assume further that dFy.�; !/ is absolutely continuous with
respect to the Lebesgue measure according to the arguments � and !, then dFy.�; !/ D fy.�; !/d�d!, where
d� D

Qd
iD1 d�i . Here fy.�; !/ is a strictly positive, real-valued function and is defined as the spatio-temporal

J. Time Ser. Anal. 38: 308–325 (2017) Copyright © 2017 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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312 T. SUBBA RAO AND G. TERDIK

spectrum of the random process ¹Yt .s/º, and �1 < �1; �2; : : : ; �d < 1;�� � ! � � . In view of the
orthogonality of the function Zy.�; !/, it can be shown that

c.h; u/ D
Z

Rd

Z �

��

ei.h��Cu!/fy.�; !/d!d�; (1)

and by inversion we obtain

fy.�; !/ D
1

.2�/dC1

X
u

Z 1
�1

e�i.h��Cu!/c.h; u/dh: (2)

From (1), we have

c.0; u/ D
Z �

��

eiu!g0.!/d!; (3)

where g0.!/ D
R1
�1

fy.�; !/d� is the second-order temporal spectral density function of the process ¹Yt .s/º,
and in view of our assumption that the process is spatially, temporally stationary g0.!/ is same for all the locations
s. We note c.h; u/ D c.�h;�u/ and fy.�; !/ D fy.��;�!/, and fy.�; !/ > 0 for all � and !.

Here � is the spatial frequency associated with the spatial coordinates si and is usually called the wave number,
and ! is the temporal frequency associated with time.

Let ¹Yt .si/º I i D 1; 2; : : : ; mI t D 1; 2; : : : ; n be a sample from the zero-mean, stationary spatio-temporal
random process ¹Yt .s/º. Consider the time-series data at the location si and define the DFT

J ysi .!k/ D
1

p
2�n

nX
tD1

Yt .si /e�it!k I .i D 1; 2; : : : ; : : : ; m/ (4)

where !k D 2�k

n
; k D 0; 1; 2; : : : ;

�
n

2

�
. We note that the DFTs can be evaluated using the FFT algorithm, and the

number of operations required to calculate FFT from a time series of length n is of the order n.lnn/. By inversion,
we obtain from (4)

Yt .s/ D

r
n

2�

Z �

��

eit!J ys .!/d!: (5)

The preceding representation shows that the ¹Yt .s/º can be decomposed into sine and cosine terms and the
complex valued random variable DFT, J ys .!/, can be considered as the amplitude corresponding to these sine and
cosine basis functions.

We will briefly summarize some well-known results associated with DFTs (Appendix), which will be required
later. For details regarding properties of the DFTs for stationary processes, we refer to the books of Brillinger
(2001) and Giraitis et al. (2012). It is well known that under some structural assumptions (Giraitis et al., 2012), the
DFTs

®
J ys .!k/

¯
evaluated at discrete Fourier frequencies !k are asymptotically uncorrelated and are distributed

as complex normal (see, for details, Brillinger (2001) and Giraitis et al. (2012)).
For example, for large n, and for a specific !k and for a specific s,

®
J ys .!k/

¯
is approximately distributed

as complex normal with mean zero and variance ¹gs.!k/º, which is the second-order temporal spectrum of the
process at the location s. In view of the spatial stationarity assumption, gs.!k/ is the same for all locations, and
we denote this common temporal spectrum by g0.!k/.

Let Iys .!k/ D jJ
y
s .!k/j

2 be the periodogram, and let Iysi ;sj .!k/ D J
y
si .!k/J

y�
sj .!k/ be the cross-periodogram

between the two time series ¹Yt .si /º and ¹Yt .sj /º. In the Appendix, we summarize some properties of the peri-
odograms (also Subba Rao and Terdik (2015)). In the following section, we define the FV and consider its
estimation and also discuss the asymptotic sampling properties of the estimator proposed.

wileyonlinelibrary.com/journal/jtsa Copyright © 2017 John Wiley & Sons Ltd J. Time Ser. Anal. 38: 308–325 (2017)
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5. FREQUENCY VARIOGRAM, PROPERTIES AND ITS ESTIMATION

As stated earlier, the variogram is used as an alternative measure of second-order dependence. It can be defined
under weaker conditions, and as such, it is widely used. Although the statistical properties of the sample variogram
are well studied in the case of spatial processes, the estimation and the asymptotic properties of various estimators
defined for spatio-temporal processes, such as O�.h; u/ defined earlier, are not well investigated, and this could be
due to the inclusion of the time dimension in the processes. To circumvent such problems, Subba Rao et al. (2014)
have considered frequency domain approach for the statistical analysis, model construction and estimation.

Frequency variogram was introduced by Subba Rao et al. (2014) as an alternative to spatio-temporal variogram
defined earlier and was found to be very useful in the estimation of parameters of spatio-temporal spectrum.
As no inversion of high dimensional matrices is required in the estimation suggested, the computation of the
minimizing criterion is easy. In this article, we consider further properties of the FV and also discuss its non-
parametric estimation. We use the FV as a tool for estimating the parameters of the spatio-temporal spectrum of the
intrinsic processes.

Let
®
J ys .!k/

¯
be the DFT evaluated at the Fourier frequency !k D 2�k

n
; k D 0; 1; 2; : : : ;

�
n

2

�
calculated using

the time-series data ¹Yt .s/º.
The FV is defined, for a fixed spatial lag h and at the location s, as follows.
Let

Xh
t .s/ D Yt .s/ � Yt .sC h/; t D 1; 2; : : : ; n:

We have

EŒXh
t .s/� D 0;VarŒXh

t .s/� D �.h;0/:

Define the DFT of the time series ¹Xh
t .s/º by

J xs;sCh.!/ D
1

p
2�n

nX
tD1

Xh
t .s/e

�it! D J ys .!/ � J
y

sCh.!/;

and the periodogram by

Ixs;sCh.!/ D jJ
x
s;sCh.!/j

2:

Definition 1.

Gxs;sCh.!/ D 2
QGxs;sCh.!/

D EjJ ys .!/ � J
y

sCh.!/j
2

D EŒIxs;sCh.!/�;

for all j!j � � . Subba Rao et al. (2014) defined Gxs;sCh.!/ as the FV.

We note that J xs;sCh.!/ is the DFT of the incremental random process
®
Xh
t .s/

¯
. If the incremental process

defined is spatially intrinsically stationary, and also temporally stationary, then the DFTs
®
J xs;sCh.!k/

¯
are asymp-

totically uncorrelated and distributed as complex Gaussian (Brillinger, 2001; Giraitis et al., 2012). These functions
are well defined, and no assumptions of spatial, temporal stationarity of the process ¹Yt .s/º are required. The FV
Gxs;sCh.!/ can be used as a measure of dissimilarity between the two random process ¹Yt .s/º and ¹Yt .sC h/º at
the frequency !. As one would expect, this measure to increase as the spatial lag khk increases and tends to zero
as jjhjj ! 0. Some further comments on FV are in order.

J. Time Ser. Anal. 38: 308–325 (2017) Copyright © 2017 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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Remark 1. The FV given by Gxs;sCh.!/ is well defined and defined under the weaker condition of intrinsic
stationarity.

Remark 2. If the intrinsic process
®
Xh
t .s/

¯
is spatially and temporally stationary, its second-order periodogram

Ixs;sCh.!/ is asymptotically an unbiased estimator of the temporal spectrum of the intrinsic process
®
Xh
t .s/

¯
. In

view of the assumption of the spatial stationarity of the intrinsic process, the second-order spectrum does not
depend on the location s: Therefore, estimating the FV is the same as estimating the second-order spectral density
function of the intrinsic process

®
Xh
t .s/

¯
. This estimation is considered in Section 6.

In the following, we show the relationship between the spatio-temporal variogram �.h; u/ and the FV.

Proposition 1. Let

Gxs;sCh.!/ D EjJ
x
s;sCh.!/j

2
;

And then Z �

��

Gxs;sCh.!/d! D �.h; 0/: (6)

Proof
An application of Parseval’s theorem gives the preceding result.

In the preceding derivation, we used the assumption that the incremental process
®
Xh
t .s/

¯
is stationary

temporally and spatially even though the original process ¹Yt .s/º may not be spatially, temporally stationary.
The preceding result (6) shows that the FV, Gxs;sCh.!/ is the frequency decomposition of the classical spatio-

temporal variogram �.h; u/ when u D 0, similar to the frequency decomposition we have for the power (variance)
of the stationary random process in terms of the power spectral density function. Since �.h; u/ is a measure of
dissimilarity between two spatial processes separated by lag h, Gxs;sCh.!/ is also a measure of dissimilarity of the
two process at the frequency !. By plotting this function as a function of !, one can observe in which frequency
band there is a large amount of lack of similarity. This information could be useful in prediction where one can
predict a time series using the time-series data from other neighbourhood locations.

Proposition 2. Let ¹Yt .s/º be a zero-mean second-order stationary process in space and time, and let®
J ysi .!/

¯
.i D 1; 2; : : : ; m/ be the DFTs of ¹Yt .si /; i D 1; 2; : : : ; mº. Let Gxsi ;sj .!/ be the FV. Then

1. The covariance function gysi ;sj .!/ D cov.J ysi .!/; J
x
sj .!// is a positive semi-definite function.

2. The FV Gxsi ;sj .!/ is conditionally negative definite.

Proof
Consider the sum S1.!/ D

Pm

iD1 aiJ
y
si .!/, where ¹aiº can be complex. Then

VarS1.!/ D
XX

aiaj
�Cov.J ysi .!/; J

y
sj .!// � 0;

hence result (1) of Proposition 2.
To prove the second result, assume

P
ai D 0. Then we can show thatXX

aiaj
�Gxsi ;sj .!/ D

XX
aiaj

�EjJ ysi .!/ � J
y
sj .!/j

2

D �2 VarŒ
mX
iD1

aiJ
y
si .!/� � 0:

wileyonlinelibrary.com/journal/jtsa Copyright © 2017 John Wiley & Sons Ltd J. Time Ser. Anal. 38: 308–325 (2017)
DOI: 10.1111/jtsa.12231



FREQUENCY VARIOGRAM OF SPATIO-TEMPORAL DATA 315

In the preceding derivation, we used the fact that
P
ai D 0 and also the second-order spectral density function

does not depend on the location si because of stationarity assumption, hence result (2) of the proposition.

5.1. Frequency Variogram and Nugget Effect

For illustration purposes, we consider the case d D 2. Suppose instead of observing the process®
Yt .s/; s 2 R2; t 2 Z

¯
, we observe a corrupted random process

®
QYt .s/; s 2 R2; t 2 Z

¯
, where for each s and t ,

QYt .s/ D Yt .s/C 	t .s/;

and ¹Yt .s/º and ¹	t .s/º are zero-mean spatially, temporally stationary processes and ¹Yt .s/º and ¹	t .s/º are inde-
pendent for all t and s, it is defined as a generalized process. Further, we assume that ¹	t .s/º is a white noise
process in space and time with the second-order space–time spectrum g�.�; !/ D

��
2

.2�/
3 for all � and !. Define

the DFT of the incremental random process of ¹ QYt .s/º,

. QYt .s/ � QYt .sC h// D .Yt .s/ � Yt .sC h//C .	t .s/ � 	t .sC h/;

and then we have

QJs;sCh.!/ D J
x
s;sCh.!/C J

�

s;sCh.!/; j!j � �;

where

QJs;sCh.!/ D
1

p
2�n

X
. QYt .s/ � QYt .sC h//e�i!t ;

J xs;sCh.!/ D
1

p
2�n

X
.Yt .s/ � Yt .sC h//e�i!t ;

J �s;sCh.!/ D
1

p
2�n

X
.	t .s/ � 	t .sC h//e�i!t :

Define the FV for the process
®
QYt .s/

¯
,

QGs;sCh.!/ D Ej QJ s;sCh.!/j
2

D EjJ x s;sCh.!/j
2
CEjJ �s;sCh.!/j

2

D Gxs;sCh.!/C
2�2�

.2�/3
:

(7)

The preceding result follows because of our assumption that the random process ¹	t .s/º is a white noise. From

(7), we observe that as khk ! 0, Gxs;sCh.!/! 0 for all ! and, therefore, QGs;sCh.!/!
�2�

.2�/
3 as khk ! 0.

If we plot
R
Gs;sCh.!/d! as a function of khk and if we observe a jump near the origin khk =0, this could be

due to the presence of white noise in the process. In other words, the observations are corrupted by white noise.
This effect is usually called the ‘nugget effect’ in geo-mining literature. In the following section, we consider
the estimation of Gs;sCh.!/ when the observations are not corrupted. In practice, one uses the FFT algorithm for
computing the DFTs when the time-series data are equally spaced.

We may point out that other types of nugget effects are feasible; for example, one could have a process that is
temporally correlated but spatially uncorrelated. Such processes were discussed by Stein (2005b).
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6. ESTIMATION OF THE FREQUENCY VARIOGRAM UNDER THE INTRINSIC STATIONARITY

Let ¹Yt .si /I i D 1; 2; 3; : : : ; mI t D 1; 2; : : : ; nº be a sample from the spatio-temporal random process ¹Yt .si /º.
Here we consider the estimation of FV under the assumption that the process is intrinsically stationary both
spatially and temporally. We assume that the process ¹Yt .si /º observed is not corrupted by noise.

Consider the FV Gxs;sCh.!/ D EjJ ys .!/ � J
y

sCh.!/j
2; j!j � � . We noted earlier that the FV Gxs;sCh.!/ is the

expected value of the periodogram of the incremental process Xh
t .s/ D Yt .s/ � Yt .s C h/; .t D 1; 2; : : :/. The

process ¹Xh
t .s/º is spatially, temporally stationary when h is fixed. Therefore, for large n, it is well known that

the periodogram is an unbiased estimator of the second-order spectral density function of the stationary process
¹Xh
t .s/º although it is not a consistent estimator. Therefore, our objective here is to obtain a consistent estimator

of the spectrum of the incremental process ¹Xh
t .s/º for a given h, using the entire sample of discrete of Fourier

transforms ¹Jsi .!k/I i D 1; 2; : : : ; mº, for all !k D 2�k

n
; .k D 0; 1; : : : ;

�
n

2

�
/.

Let gxsi ;h.!/ be the second-order spectrum of the incremental process ¹Xh
t .si /º. Since the intrinsic process is

spatially stationary gxsi ;h.!/ does not depend on si . We denote such a stationary spectrum of the intrinsic process
by gxh .!/.

Let ˝ denote the set of all locations s1; s2; : : : ; sm, and let N.h/ denote the subset of locations, such that
N.h/ D ¹si I i D 1; 2; : : : ; m, such that, both si ; si C h 2 ˝º. jN.h/j be the number of distinct elements in the set
N.h/. The estimation of stationary spectrum of a time series is well known, and therefore, we discuss the estimation
of gxh .!/ only briefly. For details, we refer to Priestley (1981), Brillinger (2001) and Brockwell and Davis (1987).

Consider the estimator

Ogxh .!/ D

Z �

��

Wn.! � �/

 
1

jN.h/j

X
i

Ixsi ;siCh.�/d�

!
; (8)

where the sum has taken over the set N.h/; and the weight function Wn.�/, which is a real-valued even function
of � , satisfies the following assumptions. For further details, see Priestley (1981) and Brillinger (2001).

Assumptions:

1. Wn.�/ � 0 for all n and � .
2.
R
Wn.�/d� D 1, all n.

3.
R
W 2
n .�/d� <1, all n.

4. For any " .> 0/, Wn.�/! 0, uniformly as n!1, for j� j > ".

Theorem 1. Let gxh .!/ be the spectral density function of the process ¹Xh
t .si /º for all si , and let gxsi ;sj .h; !/ be

the cross-spectral density function of the process ¹Xh
t .si /º and ¹Xh

t .sj /º. Then we have

E. Ogxh .!// D g
x
h .!/CO.

lnn

n
/; (9)

and

lim
n!1

Var. Ogh.!// D
1

jN.h/j2
2�

n

Z
W 2
n .! � �/

24X
i;j

jgxsi ;sj .h; �/j
2

35 d�: (10)

Proof
Take expectations of both sides of (8),

E
�
Ogxh .!/

�
D

Z
Wn.! � �/.

1

jN.h/j
/
X
i

E.Ixsi ;siCh.�//d�;
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and we have

E.Ixsi ;siCh.�// D g
x
h .�/CO

�
lnn

n

�
;

and, therefore, we obtain

E
�
Ogxh .!/

�
D gxh .!/CO

�
lnn

n

�
;

in view of Assumption 2, and the fact thatWn.�/ is approaching the Dirac delta function concentrating its mass at
� D 0. Therefore, Ogxh .!/ is asymptotically an unbiased estimator of gxh .!/. As we have noted earlier, estimating
the FV is equivalent to (for large n) estimating the spectral density gxh .!/ of the intrinsic process ¹Xh

t .si /º.
To obtain an expression for the variance, we consider a discrete approximation of cgxh.!/. Our derivation here
is heuristic, and to obtain an expression for the covariance, we assume the intrinsic process is Gaussian, even
though this assumption is not essential for proving normality or consistency (Brillinger, 2001; Giraitis et al., 2012).
Consider the discrete approximation of (8) and take variance of both sides, and we obtain

Var. Ogxh .!/ D
1

jN.h/j2

�
2�

n

�2X
P

X
P 0

Wn.! � �P /Wn.! � �P 0/

� Cov

0@X
i

Ixsi ;siCh.�P /;
X
j

Ixsj ;sjCh
.�P 0/

1A ;
and we have

Cov

0@X
i

Ixsi ;siCh.�P /;
X
j

Ixsj ;sjCh.�P 0/

1A
D 	.�p � �p0/

X
i

X
j

jgxsi ;sj .h; �p/j
2
C 	.�p C �p0/

X
i

X
j

jgxsi ;sj .h; �p/j
2
;

where 	.�/ D
P1
�1 ı.� � 2�j / is a Dirac comb (Brillinger, 2001, Corollary 7.22). To obtain the previous

expression, we used the results already well known concerning the covariance between two periodogram ordi-
nates (Brillinger, 2001). After the substitution of this expression for the covariance and after some simplification,
we obtain

lim
n!1

Var. Ogh.!// D
1

jN.h/j2
2�

n

Z
W 2
n .! � �/

hXX
.gxsi ;sj .h; �//

2/
i

d�:

The preceding result shows that Ogx
h
.!/ is a mean square-consistent estimator of gx

h
.!/, and as we mentioned

earlier, that gx
h
.!/ is asymptotically equivalent to the FV.

Remark 3. In the derivation of the preceding results, we have only assumed that the intrinsic process is Gaussian.
The assumption of Gaussianity is made only to obtain a simple expression for the variance. The result that the
estimator Ogxh .!/ is a consistent estimator is still valid under a non-Gaussianity assumption (Brillinger, 2001).

Remark 4. It is well known that the usual Matheron estimator for the variogram �.h;u/ may not be stable if the
data are sparse or irregularly shaped (Schabenberger and Gotway, 2005, p. 153). In such situations, it is usual to
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consider all pairs .si ; sj / such that si � sj D h˙4, where4 is tolerance (Cressie and Huang, 1999). The choice
of4 is arbitrary, and the derivation of the sampling properties becomes complicated.

We can show by following the preceding similar lines, that as n!1 (Priestley, 1981),

Cov
�
Ogxh .!1/; Og

x
h .!2/

�
D 0 for !1 C !2 ¤ 0:

The asymptotic normality of Ogxh .!/ can be shown using the results of Hannan (1973), Taniguchi (1980) and Deo
and Chen (2000).

7. COMPLEX STOCHASTIC PARTIAL DIFFERENTIAL EQUATION FOR THE INTRINSIC PROCESS
AND THE SPECTRUM FOR THE FREQUENCY VARIOGRAM

In a recent paper, Subba Rao and Terdik (2015) defined a complex stochastic partial differential equation for the
spatio-temporal process and obtained an analytic expression for the spectrum of the spatio-temporal process. The
parametric spectrum thus obtained from the assumed model is non-separable. A spatio-temporal random process
is said to be separable if its second-order space–time spectrum can be written as a product of two positive semi-
definite functions, which are, in fact, space spectrum, which is a function of wave numbers �, and the other part
corresponds to temporal spectrum corresponding to the temporal frequency !. As we mentioned earlier, station-
arity assumption may not be realistic always, and therefore, a weaker assumption that the process is intrinsically
stationary is made. Here our objective is to define a model for such an intrinsic process and obtain an analytic
parametric expression for the spectrum for the intrinsic process. In a later section, we consider the estimation of
the parameters of the spectral function. We may note that Yaglom (1987) and Huang et al. (2011) and others have
obtained spectra for the variogram in the case of spatial process. Yu et al. (2007) and Huang et al. (2011) have
considered non-parametric estimation of the variogram.

Consider the incremental random process Xh
t .s/ D Yt .s/ � Yt .s C h/, s 2 Rd ; t 2 Z. For a fixed h, the

incremental process is a function of the spatial location s 2 Rd , and time t 2 Z
We consider the process ¹Xh

t .s/º, which is assumed to be a zero-mean, stationary process in space and time.
Define the DFT of the time series ¹Xh

t .s/º,

J .x/s;sCh.!k/ D
1

p
2�n

nX
tD1

Xh
t .s/e

it!k ;

and the DFT J .x/s.L/;s.L/Ch.!k/ of the time series ¹Xh
t .s.L//º, where, for each t; Xh

t .s.L// D Yt .sC L/ � Yt .sC
LC h/ at the frequencies

!k D
2�k

n
.k D 0; 1; 2; : : : ;

hn
2

i
/:

Define the covariance between two distinct Fourier transforms J .x/s;sCh.!/ and J .x/s.L/;s.L/Ch.!/,

g.h/s;sCL.!/ D Cov.J .x/s;sCh.!/; J
.x/

s.L/;s.L/Ch.!//;

where J .x/s;sCh.!/; J
.x/

s.L/;s.L/Ch.!/ respectively are DFTs of the incremental processes

Xh
t .s/ D Yt .s/ � Yt .sC h/; and Xh

t .s.L// D Yt .sC L/ � Yt .sC LC h/;

for t D 1; : : : ; n; s D s1; : : : ; sm and L 2 Rd . We note that in computing the preceding result, we fix h and
consider ¹Xh

t .s/º as one spatio-temporal series.
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Since the process ¹Xh
t .s/º is a zero-mean second-order spatially, temporally stationary, it has the spectral

representation.

Xh
t .s/ D

Z
Rd

Z �

��

ei.s��Ct!/d
.h/
X
.�; !/;

where d
.h/
X
.�; !/ is a zero-mean complex random process with orthogonal increments with

EŒd
.h/
X
.�; !/� D 0;

Ejd
.h/
X
.�; !/j2 D dFX

.h/.�; !/ D f . h/
X

.�; !/d�d!:

We define fX
.h/.�; !/ as the spectral density function of the stationary intrinsic process ¹Xh

t .s/º. We have the
following spectral representation for the DFT of the intrinsic process.

Proposition 3. Let J .x/s;sCh.!/ be the DFT of the stationary time series ¹Xh
t .s/º. Then

J .x/s;sCh.!/ D

r
n

2�

Z
eis��d
X

.h/.�; !/C op.1/:

Proof
The proof is similar to the proof given in Proposition 2 of Subba Rao and Terdik (2015), and hence, the details
are omitted.

In the following, we denote the d coordinates of the location s by .s1; s2; : : : ; sd /.

Theorem 2. Let ¹J .x/si ;siCh.!/I i D 1; 2; : : : ; mº be the DFTs of the incremental process ¹Xh
t .si /º. Let

"
dX
iD1

@2

@si 2
� jPh.!; /j

2

#�
J .x/s;sCh.!/ D J

.h/
�s
.!/; j!j � �; (11)

where � > 0, and J .h/�s
.!/ is the DFT of the space–time white noise process ¹	t .s/º and Ph.!; / is a polynomial

in !, and it is a function of some parameter vector  . Then the second-order space–time spectrum of the intrinsic
process ¹Xh

t .s/º is given by

f .h/
X
.�; !/ D

��
2

.2�/dC1
1�Pd

iD1 �
2
i
C jPh.!; /j2

	2� ; (12)

and the covariance between the periodograms (which is spectrum dependent on spatial distance L, and the temporal
frequency !) is given by

g.h/s;sCL.!/ D Cov.J .x/s;sCh.!/; J
.x/

s.L/;s.L/Ch.!//

D
��
2

.2�/d22��1� .2�/

�
jjLjj

jPh.!; /j

�2�� d
2

K2�� d
2
.kLk jPh.!; /j/ ;

(13)

where s.L/ D sC L, and K�.x/ is the modified Bessel function of the second kind of order �. We note that in
view of spatial stationarity, the right-hand-side expression does not depend on s and depends only on the Euclidean
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spatial distances jjLjj and jjhjj. Further, as jjLjj ! 0, the temporal spectrum of the intrinsic process ¹Xh
t .s/º is

given by

g.h/
0
.!/ D Var.J .x/s;sCh.!// D

��
2

.2�/
d
2 2

d
2

�
jPh.!; /j2

�2v� d
2

� .2v � d

2
/

� .2v/
: (14)

Proof
The proof is similar to the proof of Theorem 1 of the paper by Subba Rao and Terdik (2015) and hence is omitted.

We note from expression (12) for the space–time spectrum corresponding to the process satisfying model (11)
that it corresponds to a non-separable process, defined earlier. We also note further that as pointed out by one
reviewer, that the assumption that the random process ¹	t .s/º is a white noise process in spatial coordinate s is
a fiction, but still, this assumption is made in the literature. More over both covariance function and the variance
given earlier depend on h since the polynomial Ph.!; / is related to the second-order spectral density function
of the intrinsic process Xh

t .s/. We note that g.h/
0
.!/ depends on some parameters, say,  . We denote this function

by g.h/
0
.!; /.

Proposition 4. Let d D 2; � D 1 and assume h is fixed. Then

g.h/
0
.!; / D

��
2

4�
jPh.!; /j

�2: (15)

The preceding result shows that the function jPh.!; /j
2 is related to the stationary temporal spectrum of the

process
®
Xh
t .s/

¯
. We note further that f h

X
.�; !/ is the spatio-temporal spectrum and g.h/

0
.!; / is the stationary

temporal spectrum of the process
®
Xh
t .s/

¯
. For large n and for a fixed h, Var.J .x/s;sCh.!// � g

.h/
0
.!; /; j!j � � .

Once again, we note that the spectral density function f .h/
X
.�; !/ is non-separable.

In the preceding result, we have shown that we can obtain a parametric expression, in a closed form, for the spectral
density function of the intrinsic process. The spectral density function is given by g.h/

0
.!; /. In the following

section, we consider the estimation of parameter vector  using the DFT of the process ¹ Xh
t .s/º.

8. ESTIMATION OF THE PARAMETERS OF THE FREQUENCY VARIOGRAM OF THE INTRINSIC
PROCESS

Matheron (1963), Cressie (1993), Stein (2012), Yu et al. (2007) and many others have stressed the importance of
the variogram in Kriging, and in view of this, several methods of estimation of the variogram in the case of spatial
processes have been proposed. Yu et al. (2007) have proposed non-parametric estimation of the variogram, and
Huang et al. (2011) proposed the estimation of the variogram and its spectrum. If one assumes that the intrinsic
process satisfies a specific model, which have parameters that are usually unknown, then one needs to estimate
the parameters of the model. In Section 7, we have obtained an expression for the spectral density function of
the intrinsic process assuming that the process satisfies the model given in Theorem 2, and we have seen that
the spectrum depends on the parameter vector  . We consider the estimation of the parameter vector  from the
data

®
Xh
t .s/

¯
.

Our objective here is to estimate  of g.h/
0
.!; / given the DFTs ¹J .x/s;sCh.!k/I i D 1; 2; : : : ; mI k D

1; 2; : : : ; Œn
2
� obtained from the intrinsic processes ¹Xh

t .si /I t D 1; 2; : : : ; nI i D 1; 2; : : : ; mº. Let the set
N.h/ D ¹si I i D 1; 2; : : : ; m, si ; si C h 2 ˝º. If we are assuming that the DFT of the intrinsic process satisfies
model (11) stated in Theorem 2, then the parameters we have to consider for the estimation are of the polynomial
Ph.!; / related to the temporal spectrum g0

.h/.!; / of the process{ Xh
t .si /º. Here we obtain the likelihood

function using the DFTs, and the approach is similar to the method described in Subba Rao et al. (2014). We refer
to the mentioned paper for details.
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Consider the DFTs ¹J .x/si ;siCh.!k//º corresponding to the time series ¹Yt .si /º, ¹Yt .siCh/º. We note that for large
n, the complex valued random variable J .x/si ;siCh.!k/ is asymptotically distributed as complex normal with mean
zero and variance g0.h/.!k; / (Brillinger, 2001; Giraitis et al., 2012) and independent over distinct frequencies.
Let M D

�
n

2

�
. Consider the M dimensional complex valued random vector

Lkhk.!/ D ¹J
.x/

si ;siCh.!1/; J
.x/

si ;siCh.!2/; : : : ; J
.x/

si ;siCh.!M /º;

which is distributed asymptotically as complex multi-variate normal with mean zero and variance covariance
matrix with diagonal elements h

gk
hk
0
.!1; /; g

khk
0
.!2; /; : : : ; g0

khk.!M ; /
i
:

We note that off-diagonal elements of the covariance matrix are zero. Proceeding as in Subba Rao et al. (2014),
we can show that the log likelihood function l. =Js;sCh.!// is proportional to

Q.h/
n;i
. / D

MX
kD1



lng0

khk.!k; /C
I xsi ;siCh

.!k/

g0.h/.!k;  /

�
:

Now consider all the locations .si ; si C h/; i D 1; 2; : : : ; m belonging to the set N.h/. Then we have the pooled
criterion

Qn;N.h/. / D
1

jN.h/j

X
.si ;si2N.h//

Q.h/
n;i
. /: (16)

Suppose we have H spatial distances ¹h.l/I l D 1; 2; : : : ;H º for which the intrinsic stationarity condition is
satisfied, and then we can define an overall measure for minimization,

Qn. / D
1

H

X
Qn;N.hl /. /: (17)

We minimize (17) with respect to  . The asymptotic normality of the estimator of  can be proved using the
methodology described by Subba Rao et al. (2014). For large n, we can show

p
n. Q � /

D
! N.0;

�
r2Qn. /

��1
V
�
r2Qn. /

�
/;

where V D limn!1 Var
h
1p
n
rQn;. /

i
, and rQn. / is a Jacobian vector of first-order partial derivatives, and�

r2Qn. /
�

is a Hessian matrix of second-order partial derivatives.

9. TEST FOR INDEPENDENCE OF m SPATIAL TIME SERIES

So far, we have considered the analysis of spatio-temporal data using various frequency domain methods. We
assumed that there is a second-order dependence in space and time. It is important to test for independence over
space and time before modelling the data. Henebry (1995) proposed a test statistic for testing spatio-temporal
independence; and the test proposed is as an extension of Moran’s test. In their book, Cressie and Wikle (2011)
briefly discussed the test. In this section, we propose a test for spatial independence using the DFTs, and the test
is based on the test proposed by Wahba (1971), which is an extension of the classical test for independence used
in multi-variate analysis. Here we briefly describe the test. Let

Y 0t D .Yt .s1/; Yt .s2/; : : : ; Yt .sm//:
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We say that the multi-variate time series ¹Y tº is second-order stationary if (Brockwell and Davis, 1987)

1. E.Y t / D �;
2. E.Y t � �/.Y tCp � �/

0

D � .p/, where

�
0

D .�1; �2; : : : ; �m/;

� .p/ D .�ij .p//;

�ij .p/ D E .Yt .si / � �i / .YtCp.sj / � �j / ; .i; j D 1; 2; : : : ; m/;

�ij .p/ D �ji .�p/:

Here we are assuming that the spatio-temporal data are temporally stationary only and that no assumption of
spatial stationarity is assumed. We assume further that Y t is Gaussian. Define the complex valued random vector

J 0.!k/ D .J
y
s1 .!k/; J

y
s2 .!k/; : : : ; J

y
sm.!k//;

where J ysi .!k/ is the DFT of the time-series data ¹Yt .si /º, and !k D 2�k

n
, .k D; 1; : : : ;

�
n

2

�
/. We know that the

random vector J .!k/ is distributed as complex normal with mean 0 and variance covariance matrix F .!k/, where
F .!k/ D

h
E.J ysi .!k/J

y�
sj .!k/

i
. We note that F .!k/ is a Hermitian matrix, with elements

fsi ;sj .!k/ D E.J
y
si .!k/J

y�
sj .!k// D fsj ;si .�!k/:

In the preceding result, fsi ;si .!k/ is the second-order spectral density function of the process ¹Yt .si /º, and
fsi ;sj .!k/ is the cross-spectral density function of the process ¹Yt .si /º and ¹Yt .sj /º. The cross-spectral density
function is usually a complex valued function.

If we assume that the spatio-temporal process ¹Yt .s/º is stationary in space and time, and further assume that
the process is isotropic in space, then

fsi ;si .!/ D f0.!/;

fsi ;sj .!/ D fjjsi�sj jj.!/:

In this case, the matrix F .!/ is real and symmetric, and all the diagonal elements are equal to f0.!/.
As pointed out earlier, for testing spatial independence, we do not need the assumption of spatial stationarity.

Subsequently, we assume that the process is Gaussian. Under the null hypothesis that the spatial process is spatially
independent, the spectral matrix F.!/ is a diagonal matrix for all j!j � � . For constructing the test, we proceed
as in Wahba (1971). Consider the DFTs defined earlier. For each location si , let the Fourier transform be given by
.J ysi .!l//, where !l D

2�jl
n

, jl D .l � 1/.2k C 1/C .k C 1/; l D 1; 2; : : : ;M1, where M1 is chosen such that
2.k C 1/M1 D

n�1
2

. (Here we assume that the number of observations n is odd.) As in Wahba (1971), we define
the cross-spectral estimator of fsi ;sj .!/ by

Ofsi ;sj .!l/ D
1

2k C 1

kX
j1D�k

Ii;j .!l C
2�j1

n
/; .l D 1; 2; : : : ;M1/;

where the cross-periodogram Iij .!l/ D J
y
si
.!l/J

y�
sj .!l/.

Let OF .!l/ D . Ofsi ;sj .!l// .l D 1; 2; : : : ;M1/.
We note that the random matrices OF .!l/I l D 1; 2; : : : ;M1, for large k, are approximately distributed as random

matrices QF .!l/; .l D 1; 2; : : : ;M/, which are distributed as complexWishart,usuallydenotedbyWc.F;m; 2kC1/.
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Wahba (1971) has shown that the likelihood ratio test for testing the null hypothesis that the matrices F.wl/ are
diagonal for all ¹!lº leads to the test statistic, for each wl ,

Q�l D
j QF .!l/jQm

jD1
Qfsj ;sj .!l/

.l D 1; 2; : : : ;M1/ ;

and the overall test statistic to consider is ƒ D � 1

M1

P
ln Q�l . For large k and M1, under the null hypothesis, the

statistic ƒ is asymptotically distributed as normal with mean

E.ƒ/ D

m�1X
jD1

m � j

k0 � j

and variance

Var.ƒ/ D
1

M1

m�1X
jD1

m � j

.k0 � j /2
;

where k0 D 2k C 1. Under the null hypotheses of spatial independence, for large k and M , the statistic S D
ƒ�E.ƒ/p

Var.ƒ/
is distributed as standard normal. We note that if for each si , ¹Yt .si /º is a Gaussian white noise, then the

spectral density function is given by fsi ;si .!/ D
�si

2

2�
, where �si

2 is the variance of the white noise. If the null
hypothesis is both spatially and temporally independent, then the diagonal elements of the matrix F.!l/ will be
proportional to .�s1

2; �s2
2; �s3

2; : : : ; �sm
2/, and all off-diagonal elements will be zero.

APPENDIX: DISCRETE FOURIER TRANSFORMS

We will briefly summarize some results related to the discrete Fourier transforms; for further details, we refer to
Subba Rao and Terdik (2015), Brillinger (2001) and Giraitis et al. (2012).

Let ¹Yt .s/º, where
®
s 2 Rd I t 2 Z

¯
denote a zero-mean second-order spatially, temporally stationary process

with spectral representation

Yt .s/ D
Z 1
�1

Z �

��

ei.s��Ct!/dZy.�; !/; (A1)

and let ¹Yt .si//I i D 1; 2; : : : ; mI t D 1; 2; : : : ; nº be a sample from the process ¹Yt .s/º. We note that Zy.�; !/ is
a zero-mean complex valued function with orthogonal increments and

EŒdZy.�; !/� D 0;

EjdZy.�; !/j
2 D dFy.�; !/;

where dFy.�; !/ is a spectral measure. Let dFy.�; !/ D fy.�; !/d�d!, where fy.�; !/ is the spatio-temporal
spectral density function of the process ¹Yt .s/º. Define the discrete Fourier transform

J ys .!/ D
1

p
2�n

nX
tD1

Yt .s/eit! ; j!j � �: (A2)

Proposition 5. Let the spectral representation of the process ¹Yt .si /º be given by (A1), and let Js.!/ be the DFT
of the sample ¹Yt .s/I t D 1; 2; : : : ; nº. Then we have
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1. Yt .s/ D
q

n

2�

R
J ys .!/e

it!d!.

2. J ys .!/ �
R
eis�

q
n

2�
dZy.�; !/.

Proof
By substitution and using the properties of Dirac delta function, one can show (2). (1) follows by inversion of
(A2). For details, refer to Subba Rao and Terdik (2015).

Let Iys .!k/ D jJ
y
s .!k/j

2 be the periodogram. The following results are well known (Priestley, 1981; Brillinger,
2001):

1. E.Iys .!k// D g
y
s .!k/CO.n

�1/.
2. Var.Iys .!k// D g

y2
s .!k/CO.n

�1/; !k ¤ 0; � .
3. Cov.Iys .!k/; I

y
s .!l/ D O.n�1/ if !k C !l ¤ 0 .mod 2�/. In view of spatial stationarity, gys .!/ D

gy
0
.!/ for all s, and

gys .!/ D
1

2�

X
k

Cov.Yt .s/; YtCk .s//e�i!k; j!j � �:

4. Cov.J ysi .!k/; J
y
sj .!k// D O.n

�1/; if !k C !l ¤ 0 .mod 2�/.

5. Cov.J ysi .!k/; J
y
sj .!k// D

1

2�

1P
nD�1

c .si � sj ; n/ e�in!k D gsi�sj .!k/ C O.n�1/. If the process is

isotropic, then the spectral density function gsi�sj .!k/ D gjjsi�sj jj.!k/, which is a real-valued function.
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