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Abstract : We obtain a maximal inequality for sub-fractional Brownian motion with Hurst

index H > 1
2 analogous to the Burkholder-Davis-Gundy inequality for fractional Brownian

motion derived by Novikov and Valkeila (Statist. Probab. Lett. 44 (1999), 47-54) and an

integral inequality for Wiener integrals with respect to a sub-fractional Brownian motion

with Hurst index H > 1
2 .
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1 Introduction

Fractional Brownian motion WH = {WH(t), t ≥ 0} has been used for modelling stochastic

phenomena with long-range dependence. It is a centered Gaussian process with the covariance

function

RH(s, t) =
1

2
(t2H + s2H − |t− s|2H)

where 0 < H < 1 and the constant H is called the Hurst index. The case H = 1/2

corresponds to the Brownian motion. FBm is the only Gaussian process which is self-similar

and has stationary increments. For properties of fBm, see Samorodnitsky and Taqqu (1994),

Mishura (2008) and Prakasa Rao (2010). Bojdecki et al. (2004) introduced a centered

Gaussian process ζH = {ζH(t), t ≥ 0} called sub-fractional Brownian motion (sub-fBm) with

the covariance function

CH(s, t) = s2H + t2H − 1

2
[(s+ t)2H + |s− t|2H ]

where 0 < H < 1. The increments of this process are not stationary and are more weakly cor-

related on non-overlapping intervals than those of a fBm. Tudor (2009) introduced a Wiener

integral with respect to a sub-fBm. Tudor ( 2007 a,b, 2008, 2009) discussed some properties
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related to sub-fBm and its corresponding stochastic calculus. By using a fundamental mar-

tingale associated to sub-fBm, a Girsanov type theorem is obtained. Diedhiou et al. (2011)

investigated parametric estimation for stochastic differential equation (SDE) driven by a

sub-fBm. Mendy (2013) studied parameter estimation for sub-fractional Ornstein-Uhlenbeck

process defined by the stochastic differential equation

dXt = θXtdt+ dζH(t), t ≥ 0

where H > 1
2 . Kuang and Xie (2013) studied properties of maximum likelihood estimator for

sub-fBm through approximation by a random walk. Shen and Li (2014) discussed estimation

for the drift of sub-fBm. Kuang and Liu (2016) discussed about the L2-consistency and

strong consistency of the maximum likelihood estimators for the sub-fBm with drift based

on discrete observations. Yan et al. (2011) obtained the Ito’s formula for sub-fractional

Brownian motion with Hurst index H > 1
2 .

Our interest is to obtain some maximal and integral inequalities for sub-fBm. For an

overview of maximal inequalities for fBm, see Prakasa Rao (2014).

2 Preliminaries

Bojdecki et al. (2004) noted that the process

1√
2
[WH(t) +WH(−t)], t ≥ 0,

where {WH(t),−∞ < t < ∞} is a fBm, is a centered Gaussian process with the same

covariance function as that of a sub-fBm. This proves the existence of a sub-fBm. They

proved the following result concerning properties of a sub-fBm.

Theorem 2.1: Let ζH = {ζH(t), t ≥ 0} be a sub-fBm. Then the following properties hold.

(i) The process ζH is self-similar, that is, for every a > 0,

{ζH(at), t ≥ 0} ∆
= {aHζH(t), t ≥ 0}

in the sense that the processes, on both the sides of the equality sign, have the same finite

dimensional distributions.

(ii) The process ζH is not Markov and it is not a semi-martingale.

(iii) For all s, t ≥ 0, the covariance function CH(s, t) of the process ζH is positive for all

s > 0, t > 0. Furthermore
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CH(s, t) > RH(s, t) if H <
1

2

and

CH(s, t) < RH(s, t) if H >
1

2
.

(iv) Let βH = 2− 22H−1. For all s ≥ 0, t ≥ 0,

βH(t− s)2H ≤ E[ζH(t)− ζH(s)]2 ≤ (t− s)2H , if H >
1

2

and

(t− s)2H ≤ E[ζH(t)− ζH(s)]2 ≤ βH(t− s)2H , if H <
1

2

and the constants in the above inequalities are sharp.

(v) The process ζH has continuous sample paths almost surely and, for each 0 < ϵ < H

and T > 0, there exists a random variable Kϵ,T such that

|ζH(t)− ζH(s)| ≤ Kϵ,T |t− s|H−ϵ, 0 ≤ s, t ≤ T.

Let f : [0, T ] → R be a measurable function and α > 0, and σ and η be real. Define the

Erdeyli-Kober-type fractional integral

(IT,σ,ηf)(s) =
σsαη

Γ(α)

∫ T

s

tσ(1−α−η)−1f(t)

(tσ − sσ)1−α
dt, s ∈ [0, T ],(2. 1)

and

nH(t, s) =

√
π

2H− 1
2

IT,2, 3−2H
4

(uH− 1
2 )I[0,t)(s)(2. 2)

=
21−H

√
π

Γ(H − 1
2)
s

3
2
−H

∫ t

0
(x2 − s2)H− 3

2dx I(0,t)(s).

The following theorem is due to Dzhaparidze and Van Zanten (2004) and Tudor (2009).

Theorem 2.2: The following representation holds, in distribution, for the sub-fBm ζH :

ζHt
∆
= cH

∫ t

0
nH(t, s)dWs, 0 ≤ t ≤ T(2. 3)

where

c2H =
Γ(2H + 1) sin(πH)

π
(2. 4)
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and {Wt, t ≥ 0} is the standard Brownian motion.

Tudor (2007b) obtained the prediction formula for a sub-fBm. For any 0 < H < 1, and

0 < a < t,

E[ζHt |ζHs , 0 ≤ s ≤ a] = SHa +

∫ a

0
ψa,t(u)dζ

H
u(2. 5)

where

ψa,t(u) =
2 sin(π(H − 1

2))

π
u(a2 − u2)

1
2
−H

∫ t

a

(z2 − a2)H− 1
2

z2 − u2
zH− 1

2dz.(2. 6)

Let

MH
t = dH

∫ t

0
s

1
2
−HdWs(2. 7)

where

dH =
2H− 1

2

cHΓ(
3
2 −H)

√
π
.(2. 8)

The process MH = {MH
t , t ≥ 0} is a Gaussian martingale and is called the sub-fractional

fundamental martingale. The filtration generated by this martingale is the same as the

filtration {Ft, t ≥ 0} generated by the sub-fBm ζH and the quadratic variation< MH ,MH >s

of the martingale MH over the interval [0, s] is equal to
d2H

2−2H s
2−2H = λHs

2−2H (say). For

any measurable function f : [0, T ] → R with
∫ T
0 f2(s)s1−2Hds < ∞, define the probability

measure Qf by

dQf
dP

|Ft = exp(

∫ t

0
f(s)dMH

s − 1

2

∫ t

0
f2(s)d < MH > (s))

= exp(

∫ t

0
f(s)dMH

s − d2H
2

∫ t

0
f2(s)s1−2Hds).

where P is the underlying probability measure. Let

(ψHf)(s) =
1

Γ(32 −H)
I
H− 1

2

0,2, 1
2
−Hf(s)(2. 9)

where, for α > 0,

(I0,σ,ηf)(s) =
σs−σ(α+η)

Γ(α)

∫ s

0

tσ(1+η)−1f(t)

(tσ − sσ)1−α
dt, s ∈ [0, T ].(2. 10)

Then the following Girsanov type theorem holds for the sub-fBm process (Tudor (2009)).

Theorem 2.3: The process

ζHt −
∫ t

0
(ψHf)(s)ds, 0 ≤ t ≤ T
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is a sub-fbm with respect to the probability measure Qf . In particular, choosing the function

f ≡ a ∈ R, it follows that the process {ζHt −at, 0 ≤ t ≤ T} is a sub-fBm under the probability

measure Qf with f ≡ a ∈ R.

3 Maximal inequalities

For any process X, defined on the underlying probability space (Ω,F , P ), let X∗ denote the

supremum process defined by

X∗
t = sup

0≤s≤t
|Xs|

whenever it is defined. Since the process ζH is self-similar, it follows that

{ζH(at), 0 ≤ t ≤ T} ∆
= {aHζH(t), 0 ≤ t ≤ T}

for any a > 0 and hence

ζH
∗
(at)

∆
= aHζH

∗
(t).

We have the following result as a consequence of the self-similarity of the process ζH .

Theorem 3.1: For any T > 0 and p > 0,

E[(ζH
∗
(T ))p] = K(H, p)T pH

where K(H, p) = E[(ζH
∗
(1))p].

The following theorem is due to Burkholder-Davis-Gundy (cf. Liptser and Shiryayev

(1989)).

Theorem 3.2: Let {Nt, βt, t ≥ 0} be a martingale with finite quadratic variation {< N,N >t

, t ≥ 0}. For any p > 0, and for any stopping time τ, adapted to the filtration {βt, t ≥ 0},
there exist positive constants cp, Cp such that

cpE[(< N,N >τ )
p/2] ≤ E[(N∗

τ )
p] ≤ CpE[(< N,N >τ )

p/2].(3. 1)

As an application of this result, we obtain the following inequality using the observation

that the process {Mt,Ft, t ≥ 0} is a martingale with quadratic variation < M,M >t=
d2H

2−2H t
2−2H .
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Theorem 3.3: For any p > 0 and any stopping time τ adapted to the filtration {Ft, t ≥ 0},
there exist positive constants cp, Cp such that

cpλ
p/2
H E[τp(1−H)] ≤ E[(M∗

τ )
p] ≤ Cpλ

p/2
H E[τp(1−H)].(3. 2)

From the results in Dzhaparidze and Van Zanten (2004) and Mendy (2013), it follows

that the representation

Wt =

∫ t

0
ψH(t, s)dζ

H
s(3. 3)

holds where {Wt, t ≥ 0} is a standard Brownian motion and

(3. 4)

ψH(t, s) =
sH− 1

2

Γ(32 −H)
[tH− 3

2 (t2 − s2)
1
2
−H − (H − 3

2
)

∫ t

s
(x2 − s2)

1
2
−HxH− 3

2dx]I(0,t)(s).

Combining the equations (2.7) and (3.3), we get that

MH
t =

∫ t

0
kH(t, s)dζ

H
s(3. 5)

where

kH(t, s) = dHs
1
2
−HψH(t, s)(3. 6)

and < M,M >t= λHt
2−2H . Following the technique in Novikov and Valkeila (1999), let

Y H
t =

∫ t

0
s

1
2
−HdζHs , t ≥ 0.(3. 7)

Then

ζHt =

∫ t

0
sH− 1

2dY H
s , t ≥ 0(3. 8)

and

MH
t = dH

∫ t

0
kH(t, s)s

H− 1
2dYs = dH

∫ t

0
ψH(t, s)dYs, t ≥ 0(3. 9)

Equation (3.8) implies that

(ζHt )∗ ≤ 2tα(Y H
t )∗

whenever H > 1
2 . Let α = H − 1

2 . Solving the integral equation (3.9) as a generalized Abel

integral equation with respect to the process Y H path-wise, we can represent the process

{Y H
t , t ≥ 0} as a stochastic integral of a function νH(t, s) with respect to the martingale

{MH
t ,Ft, t ≥ 0}, that is

Y H
t =

∫ t

0
νH(t, s)dM

H
s , t ≥ 0.(3. 10)
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Then, it follows that

(Y H
t )∗ ≤ sup

0≤s≤t
|νH(t, s)|(MH

t )∗, t ≥ 0.(3. 11)

Hence

(ζHt )∗ ≤ 2tα sup
0≤s≤t

|νH(t, s)|(MH
t )∗, t ≥ 0.(3. 12)

Let γHt = sup0≤s≤t |νH(t, s)|.
Applying the inequalities given above, for any stopping time τ with respect to the filtration

{Ft, t ≥ 0}, it follows that
(ζHτ )∗ ≤ 2ταγHτ (MH

τ )∗.(3. 13)

Hence, for any p > 0,

E[(ζHτ )∗]p ≤ 2pE[(ταγHτ )p((MH
τ )∗)p](3. 14)

Applying Holder’s inequality with q = H
2α = H

2H−1 > 1 and r = H
1−H , we get that

E[(ταγHτ )p((MH
τ )∗)p] ≤ (E[(ταγHτ )pq])1/q(E[((MH

τ )∗)pr])1/r.(3. 15)

An application of Theorem 3.2 shows that there exists a positive constant Cpr such that

E[((MH
τ )∗)pr] ≤ Cprλ

pr/2
H E[τpr(1−H)] = Cprλ

pr/2
H E[τpH ](3. 16)

and we obtain the following theorem as a consequence of the inequalities (3.14) and (3.16).

Theorem 3.3: Let H > 1
2 and τ be any stopping time adapted to filtration generated by

the process {ζHt , t ≥ 0}. Then, for any p > 0, there exists a positive constant C(p,H) such

that

E[(ζHτ )∗]p ≤ C(p,H)(E[(ταγHτ )pq])1/q(E[τpH ])1/r.(3. 17)

where q = H
2H−1 and r = H

1−H .

A better bound can be obtained if it is possible to derive a closed form for the function

|νH(t, s)| and, in turn, obtain its supremum γHt over any interval [0, t].

4 Inequalities for Wiener integrals with respect to a sub-fBm

Tudor (2009) (cf. Mendy (2013)) has investigated properties of a Wiener integral with respect

to a sub-fBm on an interval. Suppose that 1
2 < H < 1. Let ψ denote the integral operator

ψf(t) = H(2H − 1)

∫ T

0
f(s)[|s− t|2H−2 − |s+ t|2H−2]ds(4. 1)
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and define the inner product

< f, g >ψ=< f,ψg >= H(2H − 1)

∫ T

0

∫ T

0
f(s)g(t)[|s− t|2H−2 − |s+ t|2H−2]dsdt(4. 2)

where < . > denotes the usual inner product of L2[0, T ]. Let L2
ψ[0, T ] be the space of equiv-

alence classes of measurable functions such that < fI[0,T ], fI[0,T ] >ψ< ∞. The mapping

ζHt → I[0,T ] can be extended to an isometry between a subspace of the Gaussian space gener-

ated by the random variables ζHt , 0 ≤ t ≤ T and the function space L2
ψ[0, T ]. For f ∈ L2

ψ[0, T ],

define the integral
∫ T
0 f(s)dζHs as the image of the function f by this isometry. Note that

the covariance function CH(s, t) the sub-fBm can be represented in the form

E[ζHt ζ
H
s ] = H(2H − 1)

∫ t

0

∫ s

0
[|u− v|2H−2 − |u+ v|2H−2]dudv.

In general, for f, g ∈ L2
ψ[0, T ], it follows that

(4. 3)

E[

∫ T

0
f(u)dζHu

∫ T

0
g(v)dζHv ] = H(2H − 1)

∫ T

0

∫ T

0
f(u)g(v)[|u− v|2H−2 − |u+ v|2H−2]dudv

and

E([

∫ T

0
f(u)dζHu ]2) = H(2H − 1)

∫ T

0

∫ T

0
f(u)f(v)[|u− v|2H−2 − |u+ v|2H−2]dudv(4. 4)

We will now prove an integral inequality for a sub-fBm.

Theorem 4.1: Let ζH be a sub-fBm with Hurst index H > 1
2 . Then, for every r > 0, there

exists a constant c(H, r) such that,

E(|
∫ T

0
f(u)dζHu |r) ≤ c(H, r)||f(u)||rL1/H [0,T ].(4. 5)

We will use the following result due to Hardy and Littlewood (cf. Stein (1971), Theorem

1, p.119; Mishura (2008), Theorem 1.1.1; Samko et al. (1993)) in the proof of Theorem 4.1.

Lemma 4.2: Let 0 < α < 1, 1 < p < 1
α and let q = p

1−αp . Suppose that f ∈ Lp(R). Then

there exists a positive constant Cp,q,α such that

[

∫
R
(

∫
R
|f(u)||x− u|α−1du)qdx]1/q ≤ Cp,q,α[

∫
R
|f(u)|pdu]1/p.(4. 6)
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By replacing x by −x in the above inequality, it is easy to check that

[

∫
R
(

∫
R
|f(u)||x+ u|α−1du)qdx]1/q ≤ Cp,q,α[

∫
R
|f(u)|pdu]1/p(4. 7)

under the conditions stated in Lemma 4.2.

We will now prove Theorem 4.1.

Proof of Theorem 4.1: Since, the random variable
∫ T
0 f(s)dζHs is a centered Gaussian

random variable, for every r > 0, there exists a positive constant cr such that

E(|
∫ T

0
f(u)dζHu |r) ≤ cr[E(|

∫ T

0
f(u)dζHu |2)]r/2.(4. 8)

In view of the equation (4.4), the inequality (4.5) will hold if∫ T

0

∫ T

0
f(u)f(v)[|u− v|2H−2 − |u+ v|2H−2]dudv ≤ cH(

∫ T

0
|f(u)|1/Hdu)2H .(4. 9)

for some constant cH > 0. Choose p = 1/H and α = 2H − 1 in Lemma 4.2. Note that

(4. 10)∫ T

0
|f(u)|(

∫ T

0
|f(v)||u− v|2H−2dv)du ≤ (

∫ T

0
|f(u)|1/Hdu)H(

∫ T

0
(

∫ T

0
|f(v)||u− v|2H−2dv)

1
1−H )1−Hdu]

≤ C( 1
H
, 1
1−H

,α)[

∫ T

0
|f(u)|1/Hdu]2H .

Similarly

(4. 11)∫ T

0
|f(u)|(

∫ T

0
|f(v)||u+ v|2H−2dv)du ≤ (

∫ T

0
|f(u)|1/Hdu)H(

∫ T

0
(

∫ T

0
|f(v)||u+ v|2H−2)

1
1−H dv)1−Hdu]

≤ C( 1
H
, 1
1−H

,α)[

∫ T

0
|f(u|1/Hdu]2H .

It is clear that

(4. 12)

|
∫ T

0

∫ T

0
f(u)f(v)[|u− v|2H−2 − |u+ v|2H−2]dudv| ≤

∫ T

0

∫ T

0
|f(u)||f(v)||u− v|2H−2dudv

+

∫ T

0

∫ T

0
|f(u)||f(v)||u+ v|2H−2dudv.
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Combining the above inequalities, it follows that there exists a positive constant cH such

that

|
∫ T

0

∫ T

0
f(u)f(v)[|u− v|2H−2 − (u+ v)2H−2]dudv| ≤ cH [

∫ T

0
|f(u)|1/Hdu]2H(4. 13)

which in turn proves the inequality (4.5).
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